On $X$-$s$-permutable subgroups of finite groups
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 100-105

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a nonempty subset of a group $G$. A subgroup $H$ of $G$ is said to be $X$-$s$-permutable in $G$ if for every Sylow subgroup $T$ of $G$, there exists an element $x\in X$ such that $HT^x=T^xH$. In this paper we obtain some results on $X$-$s$-permutable subgroups and use them to determine the structure of some finite groups.
@article{TIMB_2008_16_1_a17,
     author = {Lei Shi and Guo Wenbin and Yi Xiaolan},
     title = {On $X$-$s$-permutable subgroups of finite groups},
     journal = {Trudy Instituta matematiki},
     pages = {100--105},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a17/}
}
TY  - JOUR
AU  - Lei Shi
AU  - Guo Wenbin
AU  - Yi Xiaolan
TI  - On $X$-$s$-permutable subgroups of finite groups
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 100
EP  - 105
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a17/
LA  - en
ID  - TIMB_2008_16_1_a17
ER  - 
%0 Journal Article
%A Lei Shi
%A Guo Wenbin
%A Yi Xiaolan
%T On $X$-$s$-permutable subgroups of finite groups
%J Trudy Instituta matematiki
%D 2008
%P 100-105
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a17/
%G en
%F TIMB_2008_16_1_a17
Lei Shi; Guo Wenbin; Yi Xiaolan. On $X$-$s$-permutable subgroups of finite groups. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 100-105. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a17/