On $X$-$s$-permutable subgroups of finite groups
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 100-105
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a nonempty subset of a group $G$. A subgroup $H$ of $G$ is said to be $X$-$s$-permutable in $G$ if for every Sylow subgroup $T$ of $G$, there exists an element $x\in X$ such that $HT^x=T^xH$. In this paper we obtain some results on $X$-$s$-permutable subgroups and use them to determine the structure of some finite groups.
@article{TIMB_2008_16_1_a17,
author = {Lei Shi and Guo Wenbin and Yi Xiaolan},
title = {On $X$-$s$-permutable subgroups of finite groups},
journal = {Trudy Instituta matematiki},
pages = {100--105},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a17/}
}
Lei Shi; Guo Wenbin; Yi Xiaolan. On $X$-$s$-permutable subgroups of finite groups. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 100-105. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a17/