On $X$-$s$-permutable subgroups of finite groups
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 100-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a nonempty subset of a group $G$. A subgroup $H$ of $G$ is said to be $X$-$s$-permutable in $G$ if for every Sylow subgroup $T$ of $G$, there exists an element $x\in X$ such that $HT^x=T^xH$. In this paper we obtain some results on $X$-$s$-permutable subgroups and use them to determine the structure of some finite groups.
@article{TIMB_2008_16_1_a17,
     author = {Lei Shi and Guo Wenbin and Yi Xiaolan},
     title = {On $X$-$s$-permutable subgroups of finite groups},
     journal = {Trudy Instituta matematiki},
     pages = {100--105},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a17/}
}
TY  - JOUR
AU  - Lei Shi
AU  - Guo Wenbin
AU  - Yi Xiaolan
TI  - On $X$-$s$-permutable subgroups of finite groups
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 100
EP  - 105
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a17/
LA  - en
ID  - TIMB_2008_16_1_a17
ER  - 
%0 Journal Article
%A Lei Shi
%A Guo Wenbin
%A Yi Xiaolan
%T On $X$-$s$-permutable subgroups of finite groups
%J Trudy Instituta matematiki
%D 2008
%P 100-105
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a17/
%G en
%F TIMB_2008_16_1_a17
Lei Shi; Guo Wenbin; Yi Xiaolan. On $X$-$s$-permutable subgroups of finite groups. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 100-105. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a17/

[1] Guo W., Shum K.P., Skiba A.N., “Conditionally permutable subgroups and supersolubility of finite groups”, Southeast Asian Bull Math., 29 (2005), 493–510 | MR | Zbl

[2] Guo W., Shum K.P., Skiba A.N., “$G$-covering systems of subgroups for the classes of $p$-supersoluble and $p$-nilpotent finite groups”, Siberian Math. J., 45:3 (2004), 75–92 | DOI | MR

[3] Guo W., Shum K.P., Skiba A.N., “Criterions of Supersolubility for Products of Supersoluble Groups”, Publ. Math. Debrecen, 68:3-4 (2006), 433–449 | MR | Zbl

[4] Guo W., Shum K.P., Skiba A.N., “X-semipermutable subgroups of finite groups”, J. Algebra, 315 (2007), 31–41 | DOI | MR | Zbl

[5] Guo W., Shum K.P., Skiba A.N., “$X$-permutable maximal subgroups of Sylow subgroups of finite groups”, Ukrain. Matem. J., 58:10 (2006), 1299–1309 | MR | Zbl

[6] Guo W., The Theory of Class of Groups, Science Press-Kluwer Academic Publishers, Beijing; New York; Dordrecht; Boston, 2000 | MR

[7] Huang J., Guo W., “$s$-Conditionally permutable subgroups of finite groups”, Chinese Ann. Math., 28:1 (2007), 17–26 | MR | Zbl

[8] Ito, Szép., “Uber die Quasinormalteiler von endlichen Gruppen”, Act. Sci. Math., 23 (1962), 168–170 | MR | Zbl

[9] Baojun Li, Skiba A.N., “New characterizations of finite supersoluble groups”, Science of China, 50:1 (2008) | MR

[10] Kegel O.H., “Sylow-gruppen and Subnormalteiler endlicher Gruppen”, Math. Z., 87 (1962), 205–221 | DOI | MR

[11] Kegel O.H., “Produkte nilpotenter Gruppen”, Arch. Math., 12 (1961), 90–93 | DOI | MR | Zbl

[12] Ore O., “Contributions in the theory of groups of finite order”, Duke Math. J., 5:2 (1939), 431–460 | DOI | MR

[13] Xu M., An Introduction to Finite Groups, Seience Press, Beijing, 1999 (in Chinese)