On minimal $\tau$-closed $\omega$-local non $\mathfrak H$-formations
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 81-85

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe the minimal $\tau$-closed $\omega$-local non-$\mathfrak H$-formations, where $\mathfrak H$ is a formation of a classical type.
@article{TIMB_2008_16_1_a13,
     author = {V. M. Selkin},
     title = {On minimal $\tau$-closed $\omega$-local non $\mathfrak H$-formations},
     journal = {Trudy Instituta matematiki},
     pages = {81--85},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a13/}
}
TY  - JOUR
AU  - V. M. Selkin
TI  - On minimal $\tau$-closed $\omega$-local non $\mathfrak H$-formations
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 81
EP  - 85
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a13/
LA  - ru
ID  - TIMB_2008_16_1_a13
ER  - 
%0 Journal Article
%A V. M. Selkin
%T On minimal $\tau$-closed $\omega$-local non $\mathfrak H$-formations
%J Trudy Instituta matematiki
%D 2008
%P 81-85
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a13/
%G ru
%F TIMB_2008_16_1_a13
V. M. Selkin. On minimal $\tau$-closed $\omega$-local non $\mathfrak H$-formations. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 81-85. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a13/