The comparative analysis of some periodogram's estimates of spectral density
Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 90-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given paper is devoted to ordering of existing estimations of spectral density and comparison of their opportunities at practical use. Asymptotic behavior of displacement and variance of considered estimations depending on used data taper of the given and spectral windows is investigated. Considering the sum of a square of displacement, as a measure of quality of estimations, asymptotic behavior of risk of an estimation of spectral density is investigated. All results are received at restrictions on data taper, spectral windows, semiinvariant spectral density quite satisfactory from the practical point of view.
@article{TIMB_2007_15_2_a9,
     author = {N. V. Semenchuk and N. N. Troush},
     title = {The comparative analysis of some periodogram's estimates of spectral density},
     journal = {Trudy Instituta matematiki},
     pages = {90--103},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a9/}
}
TY  - JOUR
AU  - N. V. Semenchuk
AU  - N. N. Troush
TI  - The comparative analysis of some periodogram's estimates of spectral density
JO  - Trudy Instituta matematiki
PY  - 2007
SP  - 90
EP  - 103
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a9/
LA  - ru
ID  - TIMB_2007_15_2_a9
ER  - 
%0 Journal Article
%A N. V. Semenchuk
%A N. N. Troush
%T The comparative analysis of some periodogram's estimates of spectral density
%J Trudy Instituta matematiki
%D 2007
%P 90-103
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a9/
%G ru
%F TIMB_2007_15_2_a9
N. V. Semenchuk; N. N. Troush. The comparative analysis of some periodogram's estimates of spectral density. Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 90-103. http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a9/

[1] Anderson T., Statisticheskii analiz vremennykh ryadov, Mir, M., 1976

[2] Brillindzher D., Vremennye ryady. Obrabotka dannykh i teoriya, Mir, M., 1980 | MR

[3] Zhurbenko I.G., Spektralnyi analiz vremennykh ryadov, Izd-vo MGU, M., 1982 | MR | Zbl

[4] Trush N.N., Asimptoticheskie metody statisticheskogo analiza vremennykh ryadov, BGU, Minsk, 1999

[5] Khennan E., Mnogomernye vremennye ryady, Mir, M., 1974

[6] Kherris F.Dzh., “Ispolzovanie okon pri garmonicheskom analize metodom diskretnogo preobrazovaniya Fure.”, TIIER, 66:1 (1978), 60–96

[7] Dahlhaus R., “Empirical spectral processes and their application to time series analysis”, Stochastic Processes and their Applications, 30 (1988), 69–83 | DOI | MR | Zbl

[8] Dahlhaus R., “On a spectral density estimate obtained by averaging periodograms”, J. Appl. Prob., 22 (1985), 598–610 | DOI | MR | Zbl

[9] Dahlhaus R., “Spectral analysis with tapered data”, J. of Time Series Analysis, 4:3 (1983), 163–175 | DOI | MR | Zbl

[10] Brillinger D.R., “Asymptotic properties of spectral estimates of second order”, Biometrica, 56 (1969), 1351–1374 | DOI | MR

[11] Zhurbenko I.G., Trush N.N., “Ob otsenke spektralnykh plotnostei statsionarnykh sluchainykh protsessov”, Litovskii mat. sb., 19:1 (1979), 67–85 | MR | Zbl

[12] Zhurbenko I.G., Trush N.N., “Spektralnyi analiz statsionarnykh sluchainykh protsessov”, Vestnik BGU. Ser. 1: Fiz. Mat. Mekh., 1981, no. 1, 58–61 | MR | Zbl

[13] Bentkus R.Yu., “Ob asimptotike minimaksnogo srednekvadratichnogo riska statisticheskikh otsenok spektralnoi plotnosti v prostranstve $L_2$”, Litovskii mat. sb., 25:1 (1985), 23–42 | MR | Zbl

[14] Bentkus R.Yu., “Ob optimalnykh statisticheskikh otsenkakh spektralnoi plotnosti v $L_2$”, Litovskii mat. sb., 24:3 (1984), 51–69 | MR | Zbl

[15] Zhurbenko I.G., Analiz statsionarnykh i odnorodnykh sluchainykh sistem, M., 1987 | MR

[16] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Chislennye metody, Laboratoriya Bazovykh Znanii, M., 2000

[17] Semenchuk N.V., “Svoistva okon prosmotra dannykh”, Vestnik BGU. Ser. 1: Fiz. Mat. Mekh., 2005, no. 2, 103–105 | MR

[18] Dahlhaus R., Polonik W., “Empirical spectral process and nonparametric maximum likelihood estimation for time series”, Empirical Process Techniques for Dependent Data, Boston, 2002, 275–298 | MR | Zbl

[19] Dahlhaus R., Sahm M., “Local likelihood methods for nonstationary time series and random fields”, Rosnhas J., 4 (2001), 457–477 | MR