On the recognition algorithm of edge intersection graphs of linear $3$-uniform hypergraphs: prelarge cliques
Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 78-89

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L^l_k$ be the class of edge intersection graphs of linear $k$-uniform hypergraphs. It is known that the recognition problem "$G\in L^l_k$" is $NP$-complete for $k\ge 3$, but there exists an algorithm deciding whether $G\in L^l_3$ for graphs $G$ with minimal vertex degree $\delta(G)\ge 10$. In this paper we provide the practical oriented modification of this algorithm.
@article{TIMB_2007_15_2_a8,
     author = {A. J. Perez Tchernov and R. I. Tyshkevich},
     title = {On the recognition algorithm of edge intersection graphs of linear $3$-uniform hypergraphs: prelarge cliques},
     journal = {Trudy Instituta matematiki},
     pages = {78--89},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a8/}
}
TY  - JOUR
AU  - A. J. Perez Tchernov
AU  - R. I. Tyshkevich
TI  - On the recognition algorithm of edge intersection graphs of linear $3$-uniform hypergraphs: prelarge cliques
JO  - Trudy Instituta matematiki
PY  - 2007
SP  - 78
EP  - 89
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a8/
LA  - ru
ID  - TIMB_2007_15_2_a8
ER  - 
%0 Journal Article
%A A. J. Perez Tchernov
%A R. I. Tyshkevich
%T On the recognition algorithm of edge intersection graphs of linear $3$-uniform hypergraphs: prelarge cliques
%J Trudy Instituta matematiki
%D 2007
%P 78-89
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a8/
%G ru
%F TIMB_2007_15_2_a8
A. J. Perez Tchernov; R. I. Tyshkevich. On the recognition algorithm of edge intersection graphs of linear $3$-uniform hypergraphs: prelarge cliques. Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 78-89. http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a8/