On the recognition algorithm of edge intersection graphs of linear $3$-uniform hypergraphs: prelarge cliques
Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 78-89
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L^l_k$ be the class of edge intersection graphs of linear $k$-uniform hypergraphs. It is known that the recognition problem "$G\in L^l_k$" is $NP$-complete for $k\ge 3$, but there exists an algorithm deciding whether $G\in L^l_3$ for graphs $G$ with minimal vertex degree $\delta(G)\ge 10$. In this paper we provide the practical oriented modification of this algorithm.
@article{TIMB_2007_15_2_a8,
author = {A. J. Perez Tchernov and R. I. Tyshkevich},
title = {On the recognition algorithm of edge intersection graphs of linear $3$-uniform hypergraphs: prelarge cliques},
journal = {Trudy Instituta matematiki},
pages = {78--89},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a8/}
}
TY - JOUR AU - A. J. Perez Tchernov AU - R. I. Tyshkevich TI - On the recognition algorithm of edge intersection graphs of linear $3$-uniform hypergraphs: prelarge cliques JO - Trudy Instituta matematiki PY - 2007 SP - 78 EP - 89 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a8/ LA - ru ID - TIMB_2007_15_2_a8 ER -
%0 Journal Article %A A. J. Perez Tchernov %A R. I. Tyshkevich %T On the recognition algorithm of edge intersection graphs of linear $3$-uniform hypergraphs: prelarge cliques %J Trudy Instituta matematiki %D 2007 %P 78-89 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a8/ %G ru %F TIMB_2007_15_2_a8
A. J. Perez Tchernov; R. I. Tyshkevich. On the recognition algorithm of edge intersection graphs of linear $3$-uniform hypergraphs: prelarge cliques. Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 78-89. http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a8/