On the restrictions of modular representations of the group $SL_{n+1}(K)$ to subgroups $SL_{r+1}(K)$ with $r$
Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 69-77
Voir la notice de l'article provenant de la source Math-Net.Ru
Restrictions of irreducible $p$-restricted representations of the algebraic group $SL_{n+1}(K)$ to naturally embedded subgroups $SL_{r+1}(K)$ with $r$ are studied. Let $n>2$ and $\omega=\sum_{i=1}^nm_i\omega_i$ be the highest weight of a representation considered. The composition factors of such restrictions are determined in the case where $r=2$ and $m_i+m_{i+1}+m_{i+2}+2$ for all $i$. For restrictions of arbitrary representations some classes of big composition factors are found as well.
@article{TIMB_2007_15_2_a7,
author = {A. A. Osinovskaya},
title = {On the restrictions of modular representations of the group $SL_{n+1}(K)$ to subgroups $SL_{r+1}(K)$ with $r<n$},
journal = {Trudy Instituta matematiki},
pages = {69--77},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a7/}
}
TY - JOUR
AU - A. A. Osinovskaya
TI - On the restrictions of modular representations of the group $SL_{n+1}(K)$ to subgroups $SL_{r+1}(K)$ with $r
JO - Trudy Instituta matematiki
PY - 2007
SP - 69
EP - 77
VL - 15
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a7/
LA - ru
ID - TIMB_2007_15_2_a7
ER -
%0 Journal Article
%A A. A. Osinovskaya
%T On the restrictions of modular representations of the group $SL_{n+1}(K)$ to subgroups $SL_{r+1}(K)$ with $r
%J Trudy Instituta matematiki
%D 2007
%P 69-77
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a7/
%G ru
%F TIMB_2007_15_2_a7
A. A. Osinovskaya. On the restrictions of modular representations of the group $SL_{n+1}(K)$ to subgroups $SL_{r+1}(K)$ with $r