On the restrictions of modular representations of the group $SL_{n+1}(K)$ to subgroups $SL_{r+1}(K)$ with $r$
Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 69-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

Restrictions of irreducible $p$-restricted representations of the algebraic group $SL_{n+1}(K)$ to naturally embedded subgroups $SL_{r+1}(K)$ with $r$ are studied. Let $n>2$ and $\omega=\sum_{i=1}^nm_i\omega_i$ be the highest weight of a representation considered. The composition factors of such restrictions are determined in the case where $r=2$ and $m_i+m_{i+1}+m_{i+2}+2$ for all $i$. For restrictions of arbitrary representations some classes of big composition factors are found as well.
@article{TIMB_2007_15_2_a7,
     author = {A. A. Osinovskaya},
     title = {On the restrictions of modular representations of the group $SL_{n+1}(K)$ to subgroups $SL_{r+1}(K)$ with $r<n$},
     journal = {Trudy Instituta matematiki},
     pages = {69--77},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a7/}
}
TY  - JOUR
AU  - A. A. Osinovskaya
TI  - On the restrictions of modular representations of the group $SL_{n+1}(K)$ to subgroups $SL_{r+1}(K)$ with $r
JO  - Trudy Instituta matematiki
PY  - 2007
SP  - 69
EP  - 77
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a7/
LA  - ru
ID  - TIMB_2007_15_2_a7
ER  - 
%0 Journal Article
%A A. A. Osinovskaya
%T On the restrictions of modular representations of the group $SL_{n+1}(K)$ to subgroups $SL_{r+1}(K)$ with $r
%J Trudy Instituta matematiki
%D 2007
%P 69-77
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a7/
%G ru
%F TIMB_2007_15_2_a7
A. A. Osinovskaya. On the restrictions of modular representations of the group $SL_{n+1}(K)$ to subgroups $SL_{r+1}(K)$ with $r
                  
                

[1] Veil G., Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 | MR

[2] Zhelobenko D.P., “Klassicheskie gruppy. Spektralnyi analiz konechnomernykh predstavlenii”, UMN, 17:1 (1962), 27–120 | MR

[3] Zheleznaya T.M., “Ob ogranicheniyakh neprivodimykh predstavlenii algebraicheskikh grupp tipa $A_n$ v kharakteristike $0$ na podgruppy tipa $A_1\times A_1$”, Trudy Instituta matematiki, 15:1 (2007), 56–67

[4] Osinovskaya A.A., Nilpotent elements in irreducible representations of simple Lie algebras of small rank, Preprint No 5 (554), Inst. Math. Nat. Acad. Sci. Belarus, Minsk, 1999

[5] Smith S., “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl

[6] Jantzen J.C., “Darstellungen halbeinfacher algebraicher Gruppen und zugeordnete kontravariante Formen”, Bonner math. Schr., 67 (1973) | MR | Zbl

[7] Suprunenko I.D., “On Jordan blocks of elements of order $p$ in irreducible representations of classical groups with $p$-large highest weights”, J. Algebra, 191 (1997), 589–627 | DOI | MR | Zbl

[8] Brundan J., Kleshchev A., Suprunenko I., “Semisimple restrictions from $GL(n)$ to $GL(n-1)$”, J. reine angew. Math., 500 (1998), 83–112 | MR | Zbl

[9] Osinovskaya A.A., “Restrictions of irreducible representations of classical algebraic groups to root\linebreak $A_1$-subgroups”, Communications in Algebra, 31 (2003), 2357–2379 | DOI | MR | Zbl

[10] Osinovskaya A.A., “Restrictions of representations of algebraic groups of types $E_n$ and $F_4$ to naturally embedded $A_1$-subgroups and the behavior of root elements”, Communications in Algebra, 33 (2005), 213–220 | DOI | MR | Zbl

[11] Osinovskaya A.A., “Ogranicheniya predstavlenii simplekticheskoi gruppy na podgruppy tipa $A_n$”, Dokl. NAN Belarusi, 49:1 (2005), 24–26 | MR | Zbl

[12] Osinovskaya A.A., “On the restrictions of modular irreducible representations of algebraic groups of type $A_n$ to naturally embedded $A_2$-subgroups”, J. of Group Theory, 8 (2005), 43–92 | DOI | MR | Zbl

[13] Osinovskaya A.A., “The restrictions of representations of algebraic groups of types $B_n$ and $D_n$ to subgroups of type $A_2$”, J. of Algebra and its Applications, 4 (2005), 467–479 | DOI | MR | Zbl

[14] Burbaki N., Gruppy i algebry Li. Gl. IV–VI, Mir, M., 1972 | MR | Zbl

[15] Zhilinskii A.G., Kogerentnye sistemy predstavlenii induktivnykh semeistv prostykh kompleksnykh algebr Li, Preprint No 38 (438)), In-t matematiki AN BSSR, Minsk, 1990

[16] Jantzen J.C., Representations of Algebraic Groups, Academic Press, Orlando, 1987 | MR | Zbl

[17] Seitz G.M., “The maximal subgroups of classical algebraic groups”, Memoirs of the AMS, 365, 1987, 1–286 | MR

[18] Suprunenko I.D., “Sokhranenie sistem vesov neprivodimykh predstavlenii algebraicheskoi gruppy i algebry Li tipa $A_l$ s ogranichennymi starshimi vesami pri reduktsii po modulyu $p$”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1983, no. 2, 18–22 | MR | Zbl

[19] Burbaki N., Gruppy i algebry Li. Gl. VII–VIII, Mir, M., 1978 | MR