The open Leontiev--Ford model
Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 15-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with an open Leontiev–Ford model that describes a linear economics. It is assumed that this economics produces $m$ commodities and $n$ damages; under these assumptions the model is a underdetermined linear system of $m+n$ equations with $m+2n$ unknowns. The results of the article are the producity criterium, theorems about conditions under which the system can compensate the whole damage and theorems about conditions under which the final damage consists of a given part of the whole damage and so on. Formally, these results are theorems about the existence (for the system under consideration) of nonnegative solutions with special properties.
@article{TIMB_2007_15_2_a1,
     author = {P. P. Zabreiko},
     title = {The open {Leontiev--Ford} model},
     journal = {Trudy Instituta matematiki},
     pages = {15--26},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a1/}
}
TY  - JOUR
AU  - P. P. Zabreiko
TI  - The open Leontiev--Ford model
JO  - Trudy Instituta matematiki
PY  - 2007
SP  - 15
EP  - 26
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a1/
LA  - ru
ID  - TIMB_2007_15_2_a1
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%T The open Leontiev--Ford model
%J Trudy Instituta matematiki
%D 2007
%P 15-26
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a1/
%G ru
%F TIMB_2007_15_2_a1
P. P. Zabreiko. The open Leontiev--Ford model. Trudy Instituta matematiki, Tome 15 (2007) no. 2, pp. 15-26. http://geodesic.mathdoc.fr/item/TIMB_2007_15_2_a1/

[1] Leontev V.V., Ford D., “Mezhotraslevoi analiz vozdeistviya struktury ekonomiki na okruzhayuschuyu sredu”, Ekonomiko-matematicheskie metody, 8:3 (1972), 370–399

[2] Gusev A.A., Stavrakova N.E., “Analiz odnoi modeli mezhotraslevogo balansa, uchityvayuschei zagryaznenie okruzhayuschei sredy”, Ekonomiko-matematicheskie metody, 12:3 (1976), 483–492

[3] Krasnoselskii M.A., Lifshits E.A., Sobolev A.V., Pozitivnye lineinye sistemy. Metod polozhitelnykh operatorov, Nauka, M., 1985 | MR

[4] Zabreiko P.P., Shevelevich K.V., “Teoremy Khiksa i Le-Shatele–Samuelsona dlya razlozhimykh neotritsatelnykh matrits”, Dokl. NAN Belarusi, 46:3 (2002), 30–35 | MR

[5] Zabreiko P.P., Shevelevich K.V., “Otsenki spektralnogo radiusa neotritsatelnykh, neobyazatelno nerazlozhimykh, matrits”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 2005, no. 1, 11–15 | MR

[6] Gorokhovik V.V., Vypuklye i negladkie zadachi vektornoi optimizatsii, Nauka i tekhnika, Minsk, 1990 | MR | Zbl

[7] Morishima M., Ravnovesie, ustoichivost, rost. Mnogootraslevoi analiz, Nauka, M., 1972

[8] Ashmanov S.A., Vvedenie v matematicheskuyu ekonomiku, Fizmatgiz, M., 1984 | MR | Zbl

[9] Stetsenko V.Ya., “Suschestvovanie neotritsatelnykh reshenii v modeli Leonteva–Forda mezhotraslevogo balansa, uchityvayuschei okhranu okruzhayuschei sredy”, Teoriya funktsii i funktsionalnyi analiz, Dushanbe, 1979, 64–71

[10] Stetsenko V.Ya., “Zakony sravnitelnoi statiki Khiksa dlya modeli Leonteva–Forda”, Dokl. AN TadzhCCP, 26:1 (1983), 12–16 | MR | Zbl

[11] Stetsenko V.Ya., Khlamova T.A., “Ob odnoi balansovoi modeli, uchityvayuschei pererabotku vrednykh otkhodov”, Dokl. AN TadzhSSR, 22:9 (1979), 525–528 | MR

[12] Stetsenko V.Ya., Khlamova T.A., “O balansovoi modeli, uchityvayuschei pererabotku vrednykh otkhodov”, Metody mashinnoi imitatsii ekonomicheskikh protsessov, M., 1982, 22–30

[13] Khlamova T.A., “Nelineinaya mezhotraslevaya balansovaya model s uchetom trebovanii ekologii”, Teoriya funktsii i funktsionalnyi analiz, Dushanbe, 1979, 81–87

[14] Margulis L.F., “Priznaki nerazlozhimosti beskonechnykh matrits v prostranstve $m$”, Dokl. AN TadzhSSR, 26:11 (1983), 683–686 | MR | Zbl

[15] Margulis L.F., Stetsenko V.Ya., “Printsip Khiksa dlya integralnykh uravnenii s beskonechnoi oblastyu integrirovaniya i beskonechnykh sistem”, Dokl. AN TadzhCCP, 26:2 (1983), 76–80 | MR | Zbl

[16] Shevelevich K.V., “Teoremy Khiksa i Le-Shatele–Samuelsona dlya beskonechnomernoi matrichnoi modeli Leonteva”, Dokl. NAN Belarusi, 47:3 (2003), 33–37 | MR | Zbl

[17] Zabreiko P.P., Shevelevich K.V., “Teoremy Khiksa i Le-Shatele–Samuelsona dlya lineinykh integralnykh uravnenii”, Dokl. NAN Belarusi, 48:1 (2004), 35–39 | MR

[18] Alekhno E.A., Zabreiko P.P., Shevelevich K.V., “Teoremy Khiksa i Le-Shatele–Samuelsona dlya lineinykh operatorov v idealnykh prostranstvakh”, Dokl. NAN Belarusi, 50:2 (2006), 13–17 | MR

[19] Stetsenko V.Ya., “Teoremy tipa Khiksa i Le-Shatele–Samuelsona dlya integralnykh uravnenii s vognutymi nelineinostyami”, Dokl. AN TadzhSSR, 32:4 (1989), 225–228 | MR | Zbl