Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2007_15_1_a10, author = {N. V. Budarina and D. Dickinson}, title = {$P$-adic {Diophantine} approximation on the {Veronese} curve with a non-monotonic error}, journal = {Trudy Instituta matematiki}, pages = {98--104}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a10/} }
TY - JOUR AU - N. V. Budarina AU - D. Dickinson TI - $P$-adic Diophantine approximation on the Veronese curve with a non-monotonic error JO - Trudy Instituta matematiki PY - 2007 SP - 98 EP - 104 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a10/ LA - en ID - TIMB_2007_15_1_a10 ER -
N. V. Budarina; D. Dickinson. $P$-adic Diophantine approximation on the Veronese curve with a non-monotonic error. Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 98-104. http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a10/
[1] Beresnevich V.V., “On a theorem of V. Bernik in the metric theory of Diophantine approximation”, Acta Arith., 117:1 (2005), 71–80 | DOI | MR | Zbl
[2] Kleinbock D.Y., Margulis G.A., “Flows on homogeneous spaces and Diophantine approximation on manifolds”, Ann. Math., 148 (1998), 339–360 | DOI | MR | Zbl
[3] Sprindžuk V., Mahler's problem in the Metric Theory of Numbers, Transl. Math. Monographs, 25, Amer. Math. Soc., Providence, R.I., 1969 | Zbl
[4] Baker A.A., “On a theorem of Sprindžuk”, Proc. Roy. Soc., London Ser. A, 292 (1966), 92–104 | DOI | Zbl
[5] Beresnevich V.V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90 (1999), 97–112 | MR | Zbl
[6] Beresnevich V., Bernik V., Kovalevskaya E., “On approximation of $p$-adic numbers by $p$-adic algebraic numbers”, J. of Number Theory, 111 (2005), 33–56 | DOI | MR | Zbl
[7] Bernik V.I., “On the exact order of approximation of zero by values of integral polynomials”, Acta Arith., 53 (1989), 17–28 | MR | Zbl
[8] Bernik V.I., Melnichuk Y.I., “On integer polynomials of a $p$-adic variable with small norm in the disc”, Proc. Lvov Polytech. Inst., 182 (1985), 63–64