$P$-adic Diophantine approximation on the Veronese curve with a non-monotonic error
Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 98-104
Voir la notice de l'article provenant de la source Math-Net.Ru
A $p$-adic analogue of the convergence part of Khintchine's Theorem for polynomials is proved with a non-monotonic error function. This is a small strengthening of Sprindžuk's theorem and a generalization of a result of Beresnevich.
@article{TIMB_2007_15_1_a10,
author = {N. V. Budarina and D. Dickinson},
title = {$P$-adic {Diophantine} approximation on the {Veronese} curve with a non-monotonic error},
journal = {Trudy Instituta matematiki},
pages = {98--104},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a10/}
}
TY - JOUR AU - N. V. Budarina AU - D. Dickinson TI - $P$-adic Diophantine approximation on the Veronese curve with a non-monotonic error JO - Trudy Instituta matematiki PY - 2007 SP - 98 EP - 104 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a10/ LA - en ID - TIMB_2007_15_1_a10 ER -
N. V. Budarina; D. Dickinson. $P$-adic Diophantine approximation on the Veronese curve with a non-monotonic error. Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 98-104. http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a10/