$P$-adic Diophantine approximation on the Veronese curve with a non-monotonic error
Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 98-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

A $p$-adic analogue of the convergence part of Khintchine's Theorem for polynomials is proved with a non-monotonic error function. This is a small strengthening of Sprindžuk's theorem and a generalization of a result of Beresnevich.
@article{TIMB_2007_15_1_a10,
     author = {N. V. Budarina and D. Dickinson},
     title = {$P$-adic {Diophantine} approximation on the {Veronese} curve with a non-monotonic error},
     journal = {Trudy Instituta matematiki},
     pages = {98--104},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a10/}
}
TY  - JOUR
AU  - N. V. Budarina
AU  - D. Dickinson
TI  - $P$-adic Diophantine approximation on the Veronese curve with a non-monotonic error
JO  - Trudy Instituta matematiki
PY  - 2007
SP  - 98
EP  - 104
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a10/
LA  - en
ID  - TIMB_2007_15_1_a10
ER  - 
%0 Journal Article
%A N. V. Budarina
%A D. Dickinson
%T $P$-adic Diophantine approximation on the Veronese curve with a non-monotonic error
%J Trudy Instituta matematiki
%D 2007
%P 98-104
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a10/
%G en
%F TIMB_2007_15_1_a10
N. V. Budarina; D. Dickinson. $P$-adic Diophantine approximation on the Veronese curve with a non-monotonic error. Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 98-104. http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a10/

[1] Beresnevich V.V., “On a theorem of V. Bernik in the metric theory of Diophantine approximation”, Acta Arith., 117:1 (2005), 71–80 | DOI | MR | Zbl

[2] Kleinbock D.Y., Margulis G.A., “Flows on homogeneous spaces and Diophantine approximation on manifolds”, Ann. Math., 148 (1998), 339–360 | DOI | MR | Zbl

[3] Sprindžuk V., Mahler's problem in the Metric Theory of Numbers, Transl. Math. Monographs, 25, Amer. Math. Soc., Providence, R.I., 1969 | Zbl

[4] Baker A.A., “On a theorem of Sprindžuk”, Proc. Roy. Soc., London Ser. A, 292 (1966), 92–104 | DOI | Zbl

[5] Beresnevich V.V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90 (1999), 97–112 | MR | Zbl

[6] Beresnevich V., Bernik V., Kovalevskaya E., “On approximation of $p$-adic numbers by $p$-adic algebraic numbers”, J. of Number Theory, 111 (2005), 33–56 | DOI | MR | Zbl

[7] Bernik V.I., “On the exact order of approximation of zero by values of integral polynomials”, Acta Arith., 53 (1989), 17–28 | MR | Zbl

[8] Bernik V.I., Melnichuk Y.I., “On integer polynomials of a $p$-adic variable with small norm in the disc”, Proc. Lvov Polytech. Inst., 182 (1985), 63–64