Minkowski's theorem on successive minima and its application to metric Diophantine approximation theory
Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 10-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give upper and lower bounds for the volumes of the bodies given by the system of linear inequalities in $\mathbb C\times\mathbb R$. As a consequences we get an analogue of Minkowski theorem on consequtive minima and the theorem on joint approximation of zero by the values of polynomials in complex and real points.
@article{TIMB_2007_15_1_a1,
     author = {D. V. Vasilyev and D. V. Koleda},
     title = {Minkowski's theorem on successive minima and its application to metric {Diophantine} approximation theory},
     journal = {Trudy Instituta matematiki},
     pages = {10--14},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a1/}
}
TY  - JOUR
AU  - D. V. Vasilyev
AU  - D. V. Koleda
TI  - Minkowski's theorem on successive minima and its application to metric Diophantine approximation theory
JO  - Trudy Instituta matematiki
PY  - 2007
SP  - 10
EP  - 14
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a1/
LA  - ru
ID  - TIMB_2007_15_1_a1
ER  - 
%0 Journal Article
%A D. V. Vasilyev
%A D. V. Koleda
%T Minkowski's theorem on successive minima and its application to metric Diophantine approximation theory
%J Trudy Instituta matematiki
%D 2007
%P 10-14
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a1/
%G ru
%F TIMB_2007_15_1_a1
D. V. Vasilyev; D. V. Koleda. Minkowski's theorem on successive minima and its application to metric Diophantine approximation theory. Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 10-14. http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a1/

[1] Minkowski H., Geometrie der Zahlen, Teubner, Lepzig–Berlin, 1910

[2] Minkowski H., Diophantische Approximationen, Teubner, Lepzig–Berlin, 1907 | Zbl

[3] Shmidt V., Diofantovy priblizheniya, Mir, M., 1983 | MR