Simultaneous approximations of real and complex numbers by algebraic numbers of special kind
Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to solving the problem about simultaneous approximation of real and complex number by special algebraic numbers. Here is given the proof of full analogue of Khintchine's theorem for convergence case.
@article{TIMB_2007_15_1_a0,
     author = {N. V. Budarina and D. Dickinson and V. I. Bernik},
     title = {Simultaneous approximations of real and complex numbers by algebraic numbers of special kind},
     journal = {Trudy Instituta matematiki},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a0/}
}
TY  - JOUR
AU  - N. V. Budarina
AU  - D. Dickinson
AU  - V. I. Bernik
TI  - Simultaneous approximations of real and complex numbers by algebraic numbers of special kind
JO  - Trudy Instituta matematiki
PY  - 2007
SP  - 3
EP  - 9
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a0/
LA  - ru
ID  - TIMB_2007_15_1_a0
ER  - 
%0 Journal Article
%A N. V. Budarina
%A D. Dickinson
%A V. I. Bernik
%T Simultaneous approximations of real and complex numbers by algebraic numbers of special kind
%J Trudy Instituta matematiki
%D 2007
%P 3-9
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a0/
%G ru
%F TIMB_2007_15_1_a0
N. V. Budarina; D. Dickinson; V. I. Bernik. Simultaneous approximations of real and complex numbers by algebraic numbers of special kind. Trudy Instituta matematiki, Tome 15 (2007) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/TIMB_2007_15_1_a0/

[1] Mahler K., “Über das Mass Menge aller $S$–Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR

[2] Sprindžuk V., Mahler's problem in the Metric Theory of Numbers, Transl. Math. Monographs, 25, Amer. Math. Soc., Providence, R.I., 1969 | Zbl

[3] Khinthine A., “Einige Satze uber Kettenbruche mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Math. Ann., 92 (1924), 115–125 | DOI | MR

[4] Bernik V.I., “On the exact order of approximation of zero by values of integral polynomials”, Acta Arith., 53 (1989), 17–28 | MR | Zbl

[5] Beresnevich V.V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90 (1999), 97–112 | MR | Zbl

[6] Bernik V., Vasilyev D., “A Khinchin–type theorem for integral–valued polynomials of a complex variable”, Proc. IM NAS of Belarus, 1999, no. 3, 10–20 | MR | Zbl

[7] Kovalevskaya E.I., O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov v $\mathbb{Q}_p$, Preprint No 2 (556), In-t matematiki NAN Belarusi, Minsk, 2000 | MR | Zbl

[8] Koksma J., “Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplex Zahlen durch algebraische Zahlen”, Mh. Math. Physik, 48 (1939), 176–189 | MR

[9] Schmidt W.M., “Bounds for sertain sums; a remark on a conjecture of Mahler”, Trans. Amer. Math. Soc., 101 (1961), 200–210 | DOI | MR | Zbl

[10] Bugeaud Y., Approximation by Algebraic Numbers, Cambridge Tracts in Math., 169, Cambridge Univ. Press, Cambridge, 2004 | MR

[11] Bernik V.I., Kukso O.S., “Mnogochleny s malymi diskriminantami i regulyarnye sistemy deistvitelnykh algebraicheskikh chisel”, Zap. nauch. seminarov POMI, 322, Sankt–Peterburg, 2005, 10–16 | MR | Zbl

[12] Bernik V.I., Kalosha N.I., “Priblizheniya nulya znacheniyami tselochislennykh polinomov v prostranstve $\mathbb{R}\times\mathbb{C}\times\mathbb{Q}_p$”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2004, no. 1, 121–123 | MR

[13] Bernik V.I., “Metricheskaya teorema o sovmestnom priblizhenii nulya znacheniyami tselochislennykh mnogochlenov”, Izv. AN SSSR. Ser. mat., 44:1 (1980), 24–45 | MR | Zbl