Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2006_14_2_a4, author = {V. V. Gorokhovik}, title = {Second order tangent vectors to sets and minimality conditions for points of subsets of ordered normed spaces}, journal = {Trudy Instituta matematiki}, pages = {35--47}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a4/} }
TY - JOUR AU - V. V. Gorokhovik TI - Second order tangent vectors to sets and minimality conditions for points of subsets of ordered normed spaces JO - Trudy Instituta matematiki PY - 2006 SP - 35 EP - 47 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a4/ LA - ru ID - TIMB_2006_14_2_a4 ER -
%0 Journal Article %A V. V. Gorokhovik %T Second order tangent vectors to sets and minimality conditions for points of subsets of ordered normed spaces %J Trudy Instituta matematiki %D 2006 %P 35-47 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a4/ %G ru %F TIMB_2006_14_2_a4
V. V. Gorokhovik. Second order tangent vectors to sets and minimality conditions for points of subsets of ordered normed spaces. Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 35-47. http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a4/
[1] Arutyunov A.V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997, 254 pp. | MR | Zbl
[2] Gorokhovik V.V., Vypuklye i negladkie zadachi vektornoi optimizatsii, Nauka i tekhnika, Minsk, 1990, 239 pp. | MR | Zbl
[3] Gorokhovik V.V., Rachkovskii N.N., Usloviya pervogo i vtorogo poryadka lokalnoi sobstvennoi minimalnosti v zadachakh vektornoi optimizatsii, Preprint No 50 (450), In-t matematiki AN BSSR, Minsk, 1990, 27 pp. | MR | Zbl
[4] Gorokhovik V.V., “K usloviyam lokalnogo minimuma vtorogo poryadka v gladkikh zadachakh optimizatsii s abstraktnymi ogranicheniyami”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2005, no. 3, 5–12 | MR
[5] Gorokhovik V.V., “Asimptoticheski kasatelnyi konus vtorogo poryadka k mnozhestvam i usloviya lokalnogo minimuma v zadache optimizatsii s ogranicheniyami”, Vestn. Sankt-Peterburgskogo un-ta. Ser. 10, 2006, no. 1, 34–41
[6] Dubovitskii A.Ya., Milyutin A.A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zhurn. vychisl. matematiki i mat. fiziki, 5:3 (1965), 395–453 | Zbl
[7] Demyanov V.F., Rubinov A.M., Priblizhennye metody resheniya ekstremalnykh zadach, Izd-vo Leningradskogo un-ta, L., 1968, 180 pp. | MR
[8] Demyanov V.F., Rubinov A.M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp. | MR
[9] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser, Boston, 1990, 461 pp. | MR | Zbl
[10] Bonnans J.F., Cominetti R., Shapiro A., “Second order optimality conditions based on parabolic second order tangent sets”, SIAM J. Optimization, 9:2 (1999), 466–492 | DOI | MR | Zbl
[11] Bonnans J.F., Shapiro A., Perturbation Analysis of Optimization Problems, Springer, Berlin, 2000, 601 pp. | MR
[12] Cambini A., Martein L., Vlach M., “Second order tangent sets and optimality conditions”, Math. Japonica, 49:3 (1999), 451–461 | MR | Zbl
[13] Mordukhovich B.S., Variational Analysis and Generalized Differentiation, v. I, Basic Theory, Springer, Berlin et al., 2005, 1057 pp. | MR
[14] Penot J.P., “Second order conditions for optimization problems with constraints”, SIAM J. Control and Optimization, 37:1 (1998), 303–318 | DOI | MR
[15] Rockafellar R.T., Wets R.J.-B., Variational analysis, Springer-Verlag, Berlin, 1998, 733 pp. | MR | Zbl