On the behaviour of root elements in modular representations of symplectic groups
Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 28-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the algebraic groups of type $C_n$, $n\ge 2$, in characteristic $p>2$ the Jordan block structure of images of long root elements in irreducible $p$-restricted representations with highest weights $m_1\omega_1+\ldots+m_n\omega_n$ and $m_{n-1}$ is described.
@article{TIMB_2006_14_2_a3,
     author = {M. V. Velichko},
     title = {On the behaviour of root elements in modular representations of symplectic groups},
     journal = {Trudy Instituta matematiki},
     pages = {28--34},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a3/}
}
TY  - JOUR
AU  - M. V. Velichko
TI  - On the behaviour of root elements in modular representations of symplectic groups
JO  - Trudy Instituta matematiki
PY  - 2006
SP  - 28
EP  - 34
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a3/
LA  - ru
ID  - TIMB_2006_14_2_a3
ER  - 
%0 Journal Article
%A M. V. Velichko
%T On the behaviour of root elements in modular representations of symplectic groups
%J Trudy Instituta matematiki
%D 2006
%P 28-34
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a3/
%G ru
%F TIMB_2006_14_2_a3
M. V. Velichko. On the behaviour of root elements in modular representations of symplectic groups. Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 28-34. http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a3/

[1] Velichko M.V., “On the behaviour of root elements in irreducible representations of simple algebraic groups”, Tr. Inst. matematiki, 13:2 (2005), 116–121

[2] Tiep P.H., Zalesskii A.E., “Mod p reducibility of unramified representations of finite groups of Lie type”, Proc. London Math. Soc., 84:3 (2002), 439–472 | DOI | MR | Zbl

[3] Osinovskaya A.A., Suprunenko I.D., “On the Jordan block structure of images of some unipotent elements in modular irreducible representations of the classical algebraic groups”, J. Algebra, 273 (2004), 586–600 | DOI | MR | Zbl

[4] Osinovskaya A.A., “Ogranicheniya predstavlenii algebraicheskikh grupp tipov $E_n$ i $F_4$ na estestvenno vlozhennye $A_1$-podgruppy i struktura blokov Zhordana unipotentnykh elementov”, Dokl. NAN Belarusi, 48:1 (2004), 6–9 | MR | Zbl

[5] Osinovskaya A.A., “Ogranicheniya nekotorykh predstavlenii simplekticheskoi gruppy na estestvenno vlozhennye podgruppy tipa $A_1$”, Dokl. NAN Belarusi, 49:1 (2005), 24–26 | MR | Zbl

[6] Smith S., “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl

[7] Jantzen J.C., Representations of Algebraic Groups, Academic Press, 1987 | MR | Zbl

[8] Seitz G.M., “Unipotent elements, tilting modules, and saturation”, Invent. Math., 141:3 (2000), 467–503 | DOI | MR

[9] Bourbaki N., Groupes et algebres de Lie. Ch. VII–VIII, Paris, Hermann, 1975 | MR

[10] Braden B., “Restricted representations of classical Lie algebras of type $A_2$ and $B_2$”, Bull. Amer. Math. Soc., 73 (1967), 482–486 | DOI | MR | Zbl

[11] Jantzen J.C., “Darstellungen halbeinfacher Gruppen und kontravariante Formen”, J. reine angew. Math., 290 (1977), 117–141 | DOI | MR | Zbl

[12] Donkin S., “On tilting modules for algebraic groups”, Math. Z., 212 (1993), 39–60 | DOI | MR | Zbl

[13] Zhelobenko D.P., “Klassicheskie gruppy. Spektralnyi analiz konechnomernykh predstavlenii”, Uspekhi mat. nauk, 17:1 (1962), 27–120 | MR

[14] Osinovskaya A.A., “Restrictions of irreducible representations of classical algebraic groups to root $A_1$-subgroups”, Comm. In Algebra, 31:5 (2003), 2357–2379 | DOI | MR | Zbl