@article{TIMB_2006_14_2_a11,
author = {A. A. Tiunchick},
title = {A systolic architecture for implementing the arithmetic of cryptographic algorithms on elliptic curves},
journal = {Trudy Instituta matematiki},
pages = {95--101},
year = {2006},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a11/}
}
TY - JOUR AU - A. A. Tiunchick TI - A systolic architecture for implementing the arithmetic of cryptographic algorithms on elliptic curves JO - Trudy Instituta matematiki PY - 2006 SP - 95 EP - 101 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a11/ LA - ru ID - TIMB_2006_14_2_a11 ER -
A. A. Tiunchick. A systolic architecture for implementing the arithmetic of cryptographic algorithms on elliptic curves. Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 95-101. http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a11/
[1] Voevodin V.V., Matematicheskie modeli i metody v parallelnykh protsessakh, M., 1986
[2] Kung S.-Y., VLSI Processor Arrays, Prentice-Hall Int., 1988
[3] Quinton P., Robert Y., Systolic algorithms and architectures, Prentice-Hall and Masson, 1989
[4] Kosianchouk V.V., Likhoded N.A., Sobolevskii P.I., Synthesis of systolic architecture array, Preprint 6 (484), In-t matematiki AN Belarusi, Minsk, 1992 | MR
[5] Massey J., Omura J., Computational method and apparatus for finite field arithmetic, U.S Patent Number 4,587,627,, May, 1986
[6] Kwon S., 16th IEEE Symposium on Computer Arithmetic 2003 (ARITH-16'03) (June 15–18, 2003, Santiago de Compostela, Spain), 2003, 196–203
[7] Reyhani-Masoleh A., Hasan M.A., 16th IEEE Symposium on Computer Arithmetic 2003 (ARITH-16'03) (June 15–18, 2003, Santiago de Compostela, Spain), 2003, 188–195
[8] Sunar B., Koc C.K., IEEE Transactions on Computers, 50:1 (2001), 83–88 | DOI | MR
[9] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988 | Zbl
[10] Karp R.M., Miller R.E., Winograd S., J. ACM, 14 (1967), 563–590 | DOI | MR | Zbl
[11] Itoh T., Tsujii S., Info. and Comput., 78:3 (1988), 171–177 | DOI | MR | Zbl