On the ergodicity of difference distribution tables of random permutations
Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 86-94
Voir la notice de l'article provenant de la source Math-Net.Ru
Properties of the Markov chain induced by the difference distribution table of a random permutation acting on a finite group $G$ are considered. The ergodicity probability and the convergence rate of this Markov chain are estimated. It is proved that the group generated by permutations $x\mapsto s(xa)$, $x,a\in G$, is $2$-transitive for almost all permutations $s$ from the permutation group of $G$.
@article{TIMB_2006_14_2_a10,
author = {A. S. Maslov},
title = {On the ergodicity of difference distribution tables of random permutations},
journal = {Trudy Instituta matematiki},
pages = {86--94},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a10/}
}
A. S. Maslov. On the ergodicity of difference distribution tables of random permutations. Trudy Instituta matematiki, Tome 14 (2006) no. 2, pp. 86-94. http://geodesic.mathdoc.fr/item/TIMB_2006_14_2_a10/