Index of zero and index at infinity for vector fields with nonnegative operators
Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 44-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formulae for the relative index of zero and the asymptotic index for completely continuous nonnegative operator $A$ are given. The case is considered where $A$ has a Fréchet derivative at its fixed point with respect to $K$ and the operator of derivative has a mere eigenvector corresponding to the eigenvalue $1$.
@article{TIMB_2006_14_1_a5,
     author = {A. V. Guminskaya},
     title = {Index of zero and index at infinity for vector fields with nonnegative operators},
     journal = {Trudy Instituta matematiki},
     pages = {44--50},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a5/}
}
TY  - JOUR
AU  - A. V. Guminskaya
TI  - Index of zero and index at infinity for vector fields with nonnegative operators
JO  - Trudy Instituta matematiki
PY  - 2006
SP  - 44
EP  - 50
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a5/
LA  - ru
ID  - TIMB_2006_14_1_a5
ER  - 
%0 Journal Article
%A A. V. Guminskaya
%T Index of zero and index at infinity for vector fields with nonnegative operators
%J Trudy Instituta matematiki
%D 2006
%P 44-50
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a5/
%G ru
%F TIMB_2006_14_1_a5
A. V. Guminskaya. Index of zero and index at infinity for vector fields with nonnegative operators. Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 44-50. http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a5/

[1] Krasnoselskii M.A., Zabreiko P.P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[2] Dancer E.N., “Positivity of maps and applications”, Topological Nonlinear Analysis: Degree, Singularity and Variations, 1995, 303–340 | MR | Zbl

[3] Zabreiko P.P., Smitskikh S.V., “K zadache o vychislenii indeksa nulevoi osoboi tochki vpolne nepreryvnykh vektornykh polei s polozhitelnymi operatorami”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, 2, Yaroslavl, 1977, 52–69 | MR

[4] Krasnoselskii M.A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR

[5] Krasnoselskii M.A., Krasnoselskii A.M., “Vektornye polya v pryamom proizvedenii prostranstv i prilozheniya k differentsialnym uravneniyam”, Differents. uravneniya, 33:1 (1997), 60–67 | MR

[6] Marchenko N.V., “O prodolzhenii operatora i suschestvovanii nepodvizhnykh tochek”, Dokl. AN SSSR, 147:5 (1962), 1026–1028 | Zbl

[7] Smitskikh S.V., “Sobstvennye vektory i otnositelnye indeksy polozhitelnykh operatorov”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, Yaroslavl, 1978, 171–183 | MR | Zbl