On power expansions of solutions of the second Painleve hierarchy
Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 36-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article all power expansions of solutions of the second Painleve hierarchy are obtained. For this purpose the power geometry method was used.
@article{TIMB_2006_14_1_a4,
     author = {V. I. Gromak and M. S. Nialepka},
     title = {On power expansions of solutions of the second {Painleve} hierarchy},
     journal = {Trudy Instituta matematiki},
     pages = {36--43},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a4/}
}
TY  - JOUR
AU  - V. I. Gromak
AU  - M. S. Nialepka
TI  - On power expansions of solutions of the second Painleve hierarchy
JO  - Trudy Instituta matematiki
PY  - 2006
SP  - 36
EP  - 43
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a4/
LA  - ru
ID  - TIMB_2006_14_1_a4
ER  - 
%0 Journal Article
%A V. I. Gromak
%A M. S. Nialepka
%T On power expansions of solutions of the second Painleve hierarchy
%J Trudy Instituta matematiki
%D 2006
%P 36-43
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a4/
%G ru
%F TIMB_2006_14_1_a4
V. I. Gromak; M. S. Nialepka. On power expansions of solutions of the second Painleve hierarchy. Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 36-43. http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a4/

[1] Airault H., “Rational Solutions of Painleve Equations”, Stud. Appl. Math., 61 (1979), 31–53 | MR | Zbl

[2] Gromak V.I., “Nelineinye evolyutsionnye uravneniya i uravneniya $P$-tipa”, Differents. uravneniya, 20:12 (1984), 2042–2048 | MR | Zbl

[3] Martynov I.P., “O differentsialnykh uravneniyakh s nepodvizhnymi kriticheskimi osobymi tochkami”, Differents. uravneniya, 9:10 (1973), 1780–1791 | MR | Zbl

[4] Kudryashov N.A., “The first and the second Painleve equations of the higher order and some relations between them”, Phys. Lett. A, 224 (1997), 353–360 | DOI | MR

[5] Gromak V.I., Laine I., Shimomura SH., Painleve differential equations in the complex plane, De Gruyter Studies in Mathematics, Berlin; New-York, 2002, 28 pp. | MR

[6] Bryuno A.D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Fizmatlit, M., 1998 | MR | Zbl

[7] Bryuno A.D., Zavgorodnyaya Yu.V., Stepennye ryady i nestepennye asimptotiki reshenii vtorogo uravneniya Penleve, Preprint In-ta prikladnoi matematiki im. M.V. Keldysha RAN: 48, M., 2003

[8] Wasow V.R., Asymptotic expansions for the ordinary differential equations, John Wiley and Sons, New York; London; Sydney, 1965, 75 pp. | MR | Zbl

[9] Yezhou Li, Yuzan He., “On analytic properties of higher analogues of the second Painleve equation”, J. Math. Phys., 43:2 (2002), 1106–1115 | DOI | MR | Zbl