Diophantine exponents of measures: a~dynamical approach and submanifolds
Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 108-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

We place the theory of metric Diophantine approximation on manifolds into a broader context of studying Diophantine properties of points generic with respect to certain measures on $\mathbb R^n$. The correspondence between multidimensional Diophantine approximation and dynamics of lattices in Euclidean spaces is discussed in an elementary way, and several recent results obtained by means of this correspondence are surveyed.
@article{TIMB_2006_14_1_a12,
     author = {D. Kleinbock},
     title = {Diophantine exponents of measures: a~dynamical approach and submanifolds},
     journal = {Trudy Instituta matematiki},
     pages = {108--117},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a12/}
}
TY  - JOUR
AU  - D. Kleinbock
TI  - Diophantine exponents of measures: a~dynamical approach and submanifolds
JO  - Trudy Instituta matematiki
PY  - 2006
SP  - 108
EP  - 117
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a12/
LA  - en
ID  - TIMB_2006_14_1_a12
ER  - 
%0 Journal Article
%A D. Kleinbock
%T Diophantine exponents of measures: a~dynamical approach and submanifolds
%J Trudy Instituta matematiki
%D 2006
%P 108-117
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a12/
%G en
%F TIMB_2006_14_1_a12
D. Kleinbock. Diophantine exponents of measures: a~dynamical approach and submanifolds. Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 108-117. http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a12/