Multi-dimensional parallelization considering conditions of data localization
Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 12-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is dedicated to the problem of mapping of computational algorithms onto distributed memory multiprocessor computers. A procedure of parallelization is presented. The procedure uses new more general conditions of data localization that take into consideration more possibilities of effective use of data in memory.
@article{TIMB_2006_14_1_a1,
     author = {E. V. Adutskevich and S. V. Bakhanovich and N. A. Likhoded},
     title = {Multi-dimensional parallelization considering conditions of data localization},
     journal = {Trudy Instituta matematiki},
     pages = {12--22},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a1/}
}
TY  - JOUR
AU  - E. V. Adutskevich
AU  - S. V. Bakhanovich
AU  - N. A. Likhoded
TI  - Multi-dimensional parallelization considering conditions of data localization
JO  - Trudy Instituta matematiki
PY  - 2006
SP  - 12
EP  - 22
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a1/
LA  - ru
ID  - TIMB_2006_14_1_a1
ER  - 
%0 Journal Article
%A E. V. Adutskevich
%A S. V. Bakhanovich
%A N. A. Likhoded
%T Multi-dimensional parallelization considering conditions of data localization
%J Trudy Instituta matematiki
%D 2006
%P 12-22
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a1/
%G ru
%F TIMB_2006_14_1_a1
E. V. Adutskevich; S. V. Bakhanovich; N. A. Likhoded. Multi-dimensional parallelization considering conditions of data localization. Trudy Instituta matematiki, Tome 14 (2006) no. 1, pp. 12-22. http://geodesic.mathdoc.fr/item/TIMB_2006_14_1_a1/

[1] Voevodin V.V., Voevodin Vl.V., Parallelnye vychisleniya, BKhV-Peterburg, SPb., 2002, 608 pp.

[2] Darte A., “Mathematical tools for loop transformations: from systems of uniform recurrence equations to the polytope model”, Algorithms for Parallel Processing, IMA Volumes in Mathematics and its Applications, 105, 1999, 147–183 | MR | Zbl

[3] Lim A.W., Lam M.S., “An affine partitioning algorithm to maximize parallelism and minimize communication”, Proceedings of the 1-sth ACM SIGARCH International Conference on Supercomputing, 1999

[4] Lim A.W., Liao S.-W., Lam M.S., “Blocking and array contraction across arbitrary nested loops using affine partitioning”, Proceedings of the ACM SIGPLAN Simposium on Principles and Practice of Programming Languages, 2001

[5] Adutskevich E.V., Bakhanovich S.V., Likhoded N.A., “Usloviya polucheniya soglasovannogo taimirovaniya i raspredeleniya operatsii i dannykh mezhdu protsessorami”, Tr. mezhdunar. nauch. konf. “Superkompyuternye sistemy i ikh primenenie” (SSA'2004), Minsk, 2004, 160–164

[6] Adutskevich E.V., Bakhanovich S.V., “Adaptatsiya algoritmov k realizatsii na sistemakh s raspredelennoi pamyatyu. Prostranstvenno-vremennaya lokalizatsiya i raspredelenie dannykh”, Tr. mezhdunar. nauch. konf. “Superkompyuternye sistemy i ikh primenenie” (SSA'2004), Minsk, 2004, 165–169

[7] Adutskevich E.V., Likhoded N.A., “Soglasovannoe poluchenie konveiernogo parallelizma i raspredeleniya operatsii i dannykh mezhdu protsessorami”, Programmirovanie, 32:3 (2006), 54–65 | MR | Zbl

[8] Adutskevich E.V., Bakhanovich S.V., Likhoded N.A., “Usloviya lokalizatsii dannykh pri posledovatelnoi i parallelnoi realizatsii algoritmov”, Dokl. NAN Belarusi, 50:1 (2006), 34–40 | MR