On a discrete extremal problem with constraints
Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 89-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results on the existence of solutions for some discrete extremal problems with constraints were established. As an application the existence of a solution of a nonlinear eigenvalue problem was obtained.
Keywords: Discrete extremal problems with constraints, discrete nonlinear Schredinger type equations, minimizing sequence, finite-dimensional extremal problems.
@article{THSP_2020_25_2_a8,
     author = {N. V. Zakharchenko and L. I. Nakonechna},
     title = {On a discrete extremal problem with constraints},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {89--92},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a8/}
}
TY  - JOUR
AU  - N. V. Zakharchenko
AU  - L. I. Nakonechna
TI  - On a discrete extremal problem with constraints
JO  - Teoriâ slučajnyh processov
PY  - 2020
SP  - 89
EP  - 92
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a8/
LA  - en
ID  - THSP_2020_25_2_a8
ER  - 
%0 Journal Article
%A N. V. Zakharchenko
%A L. I. Nakonechna
%T On a discrete extremal problem with constraints
%J Teoriâ slučajnyh processov
%D 2020
%P 89-92
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a8/
%G en
%F THSP_2020_25_2_a8
N. V. Zakharchenko; L. I. Nakonechna. On a discrete extremal problem with constraints. Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 89-92. http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a8/

[1] A. Pankov, N. Zakharchenko, “On some discrete variational problems”, Acta Appl. Math., 65:1-3 (2001), 295–303

[2] P. L. Lions, “The concentration-compactness principle in the calculus of variations. The locally compact case, II.”, Ann. Inst. H. Poincare, Anal. Non. Lin., 1:4 (1984), 223–283

[3] P. L. Lions, “The concentration-compactness principle in the calculus of variations. The locally compact case, I.”, Ann. Inst. H. Poincare, Anal. Non. Lin., 1:2 (1984), 109–145

[4] V. S. Buslaev, Variatsionnoye ischislenie, Publisher LGU, Leningrad, 1980 (Russian)