On a discrete extremal problem with constraints
Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 89-92
Cet article a éte moissonné depuis la source Math-Net.Ru
The results on the existence of solutions for some discrete extremal problems with constraints were established. As an application the existence of a solution of a nonlinear eigenvalue problem was obtained.
Keywords:
Discrete extremal problems with constraints, discrete nonlinear Schredinger type equations, minimizing sequence, finite-dimensional extremal problems.
@article{THSP_2020_25_2_a8,
author = {N. V. Zakharchenko and L. I. Nakonechna},
title = {On a discrete extremal problem with constraints},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {89--92},
year = {2020},
volume = {25},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a8/}
}
N. V. Zakharchenko; L. I. Nakonechna. On a discrete extremal problem with constraints. Teoriâ slučajnyh processov, Tome 25 (2020) no. 2, pp. 89-92. http://geodesic.mathdoc.fr/item/THSP_2020_25_2_a8/
[1] A. Pankov, N. Zakharchenko, “On some discrete variational problems”, Acta Appl. Math., 65:1-3 (2001), 295–303
[2] P. L. Lions, “The concentration-compactness principle in the calculus of variations. The locally compact case, II.”, Ann. Inst. H. Poincare, Anal. Non. Lin., 1:4 (1984), 223–283
[3] P. L. Lions, “The concentration-compactness principle in the calculus of variations. The locally compact case, I.”, Ann. Inst. H. Poincare, Anal. Non. Lin., 1:2 (1984), 109–145
[4] V. S. Buslaev, Variatsionnoye ischislenie, Publisher LGU, Leningrad, 1980 (Russian)