Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2020_25_1_a3, author = {V. Mandrekar and U. V. Naik-Nimbalkar}, title = {Weak uniqueness of martingale solutions to stochastic partial differential equations in {Hilbert} spaces}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {78--89}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a3/} }
TY - JOUR AU - V. Mandrekar AU - U. V. Naik-Nimbalkar TI - Weak uniqueness of martingale solutions to stochastic partial differential equations in Hilbert spaces JO - Teoriâ slučajnyh processov PY - 2020 SP - 78 EP - 89 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a3/ LA - en ID - THSP_2020_25_1_a3 ER -
%0 Journal Article %A V. Mandrekar %A U. V. Naik-Nimbalkar %T Weak uniqueness of martingale solutions to stochastic partial differential equations in Hilbert spaces %J Teoriâ slučajnyh processov %D 2020 %P 78-89 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a3/ %G en %F THSP_2020_25_1_a3
V. Mandrekar; U. V. Naik-Nimbalkar. Weak uniqueness of martingale solutions to stochastic partial differential equations in Hilbert spaces. Teoriâ slučajnyh processov, Tome 25 (2020) no. 1, pp. 78-89. http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a3/
[1] D. Filipović, S. Tappe, J. Teichmann, “Jump-diffusions in Hilbert spaces: existence, stability and numerics”, Stochastics, 82:5 (2010), 475–520 | DOI | MR
[2] L. Gawarecki, V. Mandrekar, Stochastic differential equations in infinite dimensions, Springer, Springer-Verlag, Berlin, Heidelberg, 2011 | MR
[3] Springer-Verlag, New York Inc, 1979 | MR
[4] V. Mandrekar, A. V. Skorokhod, “An approach to the martingale problem for diffusion stochastic equations in a Hilbert space”, Theory of Stochastic Processes, 4:20 (1998), 54–59 | MR
[5] D. W. Stroock, S. R. S. Varadhan, “Diffusion processes with continuous coefficients I”, Pure. and Appl. Math., 12 (1969), 345–400 | DOI | MR
[6] B. Sz.-Nagy, C. Foias, Harmonic analysis of operators on Hilbert space, Second Edition, Springer, New York, 2010 | MR
[7] S. Tappe, “The Yamada-Watanabe Theorem for mild solutions to stochastic partial differential equations”, Electronic Communications in Probability, 18:24 (2013), 1–13 | MR