Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2020_25_1_a1, author = {A. A. Dorogovtsev and M. B. Vovchanskii}, title = {Representations of the finite-dimensional point densities in {Arratia} flows with drift}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {25--36}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a1/} }
TY - JOUR AU - A. A. Dorogovtsev AU - M. B. Vovchanskii TI - Representations of the finite-dimensional point densities in Arratia flows with drift JO - Teoriâ slučajnyh processov PY - 2020 SP - 25 EP - 36 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a1/ LA - en ID - THSP_2020_25_1_a1 ER -
A. A. Dorogovtsev; M. B. Vovchanskii. Representations of the finite-dimensional point densities in Arratia flows with drift. Teoriâ slučajnyh processov, Tome 25 (2020) no. 1, pp. 25-36. http://geodesic.mathdoc.fr/item/THSP_2020_25_1_a1/
[1] A. A. Dorogovtsev, Meroznachnye protsessy i stokhasticheskie potoki [Measure-valued Processes and Stochastic Flows], Proceedings of Institute of Mathematics of NAS of Ukraine, Mathematics and its Applications, 66, Institute of Mathematics of NAS of Ukraine, Kiev, 2007 (Russian) | MR
[2] A. A. Dorogovtsev, “Krylov-Veretennikov expansion for coalescing stochastic flows”, Commun. Stoch. Anal., 6:3 (2012), 421–435 | MR
[3] A. A. Dorogovtsev, M. B. Vovchanskii, “On approximations of the point measures associated with the Brownian web by means of the fractional step method and the discretization of the initial interval”, Ukr. Math. J., 72:9 (2020), 1179–1194 | MR
[4] P. Gosselin, T. Wurzbacher, “An Itô type isometry for loops in $\mathbf {R}^d$ via the Brownian bridge”, Séminaire de probabilites de Strasbourg, 31 (1997), 225–231 | MR
[5] O. Kallenberg, Foundations of Modern Probability, Probability and its Applications, 2nd ed., Springer-Verlag, New York, 2002 | DOI | MR
[6] I. Karatzas, S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Springer-Verlag, 1996 | MR
[7] V. Konarovskyi, V. Marx, Conditional Distribution of Independent Brownian Motions to Event of Coalescing Paths, 2020, arXiv: abs/2008.02568
[8] H.-H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, 463, Springer-Verlag, Berlin, 1975 | DOI | MR
[9] R. Munasinghe, R. Rajesh, R. Tribe, O. Zaboronski, “Multi-scaling of the $n-$point density function for coalescing Brownian motions”, Communications in Mathematical Physics, 268 (2006), 717–725 | DOI | MR
[10] Ph. E. Protter, Stochastic integration and differential equations, Applications of Mathematics (New York), Stochastic Modelling and Applied Probability, 21, 2nd ed., Springer-Verlag, Berlin, 2004, 415 xiv+ p. pp. | MR
[11] R. Tribe, O. Zaboronski, “Pfaffian formulae for one dimensional coalescing and annihilating systems”, Electronic Journal of Probability, 16 (2011), 2080–2103 | DOI | MR
[12] V. Fomichov, “The distribution of the number of clusters in the Arratia flow”, Communications on Stochastic Analysis, 10:3 (2016), 257–270 | DOI | MR