On exponential decay of a distance between solutions of an SDE with non-regular drift
Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a multidimensional stochastic differential equation with a Gaussian noise and a drift vector having a jump discontinuity along a hyperplane. The large time behavior of the distance between two solutions starting from different points is studied. We find a sufficient condition for the exponential decay of the distance if the drift does not satisfy a dissipative condition on a given hyperplane.
Keywords: SDE with discontinuous coefficients, Long-time behavior of solutions.
@article{THSP_2019_24_2_a0,
     author = {O. Aryasova and A. Pilipenko},
     title = {On exponential decay of a distance between solutions of an {SDE} with non-regular drift},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a0/}
}
TY  - JOUR
AU  - O. Aryasova
AU  - A. Pilipenko
TI  - On exponential decay of a distance between solutions of an SDE with non-regular drift
JO  - Teoriâ slučajnyh processov
PY  - 2019
SP  - 1
EP  - 13
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a0/
LA  - en
ID  - THSP_2019_24_2_a0
ER  - 
%0 Journal Article
%A O. Aryasova
%A A. Pilipenko
%T On exponential decay of a distance between solutions of an SDE with non-regular drift
%J Teoriâ slučajnyh processov
%D 2019
%P 1-13
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a0/
%G en
%F THSP_2019_24_2_a0
O. Aryasova; A. Pilipenko. On exponential decay of a distance between solutions of an SDE with non-regular drift. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 1-13. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a0/

[1] O. Aryasova, A. Pilipenko, “A representation for the derivative with respect to the initial data of the solution of an sde with a non-regular drift”, North-W. Eur. J. of Math., 3 (2017), 1–40 | Zbl

[2] O. Aryasova, A. Pilipenko, Exponential a.s. synchronization of one-dimensional diffusions with non-regular coefficients, 2020, arXiv: 2003.02614

[3] O. V. Aryasova, A. Yu. Pilipenko, “On properties of a flow generated by an {SDE} with discontinuous drift”, Electron. J. Probab., 17:106 (2012), 1–20

[4] N. Bouleau, F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, De Gruyter, Berlin–Boston, 2010

[5] E. B. Dynkin, Markov Processes, v. 1, Fizmatlit, Moscow, 1963, 365 pp. ; Translated from the Russian to the English J. Fabius, V. Greenberg, A. Maitra, G. Majone, v. 1, Academic Press, New York, 1965, xii + 365 pp.; v. 2, Springer, Berlin, viii + 274 pp. | Zbl

[6] F. Flandoli, B. Gess, M. Scheutzow, “Synchronization by noise for order-preserving random dynamical systems”, Ann. Probab., 45:2 (2017), 1325–1350 | Zbl

[7] Translated from the Russian by S. Kotz, Corrected printing of the first edition, Springer, Berlin, 2004, viii+441 pp.

[8] K. Itô, M. Nisio, “On stationary solutions of a stochastic differential equation”, J. Math. Kyoto Univ., 4:1 (1964), 1–75 | Zbl

[9] R. Z. Khasminskii, “On positive solutions of the equation $\mathfrak{A}u + vu = 0$”, Theory of Probability and Its Applications, 4:3 (1959), 309–318

[10] R. Z. Khasminskii, Stochastic Stability of Differential Equations, Springer, Berlin–Heidelberg, 2012; Originally published Nauka, M., 1969 (in Russian); R.Z. Has'minski, Mechanics: Analysis, 1st English ed., Sijthoff Noordhoff, 1980

[11] A. Kulik, Ergodic Behavior of Markov Processes: With Applications to Limit Theorems, De Gruyter Studies in Mathematics Series, Walter de Gruyter GmbH, 2017

[12] G. Da Prato, Z. Zabczyk, Ergodicity for Infinite-Dimensional Systems, Probability theory and mathematical statistics, Cambridge University Press, Cambridge, 1996

[13] P. E. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, Berlin, 2004

[14] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1999

[15] A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer Monographs in Mathematics, Springer, Berlin, 1998

[16] A. Y. Veretennikov, “On strong solutions and explicit formulas for solutions of stochastic integral equations”, Math. USSR Sborn., 39:3 (1981), 387–403