Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2019_24_2_a0, author = {O. Aryasova and A. Pilipenko}, title = {On exponential decay of a distance between solutions of an {SDE} with non-regular drift}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {1--13}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a0/} }
TY - JOUR AU - O. Aryasova AU - A. Pilipenko TI - On exponential decay of a distance between solutions of an SDE with non-regular drift JO - Teoriâ slučajnyh processov PY - 2019 SP - 1 EP - 13 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a0/ LA - en ID - THSP_2019_24_2_a0 ER -
O. Aryasova; A. Pilipenko. On exponential decay of a distance between solutions of an SDE with non-regular drift. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 1-13. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a0/
[1] O. Aryasova, A. Pilipenko, “A representation for the derivative with respect to the initial data of the solution of an sde with a non-regular drift”, North-W. Eur. J. of Math., 3 (2017), 1–40 | Zbl
[2] O. Aryasova, A. Pilipenko, Exponential a.s. synchronization of one-dimensional diffusions with non-regular coefficients, 2020, arXiv: 2003.02614
[3] O. V. Aryasova, A. Yu. Pilipenko, “On properties of a flow generated by an {SDE} with discontinuous drift”, Electron. J. Probab., 17:106 (2012), 1–20
[4] N. Bouleau, F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, De Gruyter, Berlin–Boston, 2010
[5] E. B. Dynkin, Markov Processes, v. 1, Fizmatlit, Moscow, 1963, 365 pp. ; Translated from the Russian to the English J. Fabius, V. Greenberg, A. Maitra, G. Majone, v. 1, Academic Press, New York, 1965, xii + 365 pp.; v. 2, Springer, Berlin, viii + 274 pp. | Zbl
[6] F. Flandoli, B. Gess, M. Scheutzow, “Synchronization by noise for order-preserving random dynamical systems”, Ann. Probab., 45:2 (2017), 1325–1350 | Zbl
[7] Translated from the Russian by S. Kotz, Corrected printing of the first edition, Springer, Berlin, 2004, viii+441 pp.
[8] K. Itô, M. Nisio, “On stationary solutions of a stochastic differential equation”, J. Math. Kyoto Univ., 4:1 (1964), 1–75 | Zbl
[9] R. Z. Khasminskii, “On positive solutions of the equation $\mathfrak{A}u + vu = 0$”, Theory of Probability and Its Applications, 4:3 (1959), 309–318
[10] R. Z. Khasminskii, Stochastic Stability of Differential Equations, Springer, Berlin–Heidelberg, 2012; Originally published Nauka, M., 1969 (in Russian); R.Z. Has'minski, Mechanics: Analysis, 1st English ed., Sijthoff Noordhoff, 1980
[11] A. Kulik, Ergodic Behavior of Markov Processes: With Applications to Limit Theorems, De Gruyter Studies in Mathematics Series, Walter de Gruyter GmbH, 2017
[12] G. Da Prato, Z. Zabczyk, Ergodicity for Infinite-Dimensional Systems, Probability theory and mathematical statistics, Cambridge University Press, Cambridge, 1996
[13] P. E. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, Berlin, 2004
[14] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1999
[15] A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer Monographs in Mathematics, Springer, Berlin, 1998
[16] A. Y. Veretennikov, “On strong solutions and explicit formulas for solutions of stochastic integral equations”, Math. USSR Sborn., 39:3 (1981), 387–403