On exponential decay of a distance between solutions of an SDE with non-regular drift
Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 1-13
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a multidimensional stochastic differential equation with a Gaussian noise and a drift vector having a jump discontinuity along a hyperplane. The large time behavior of the distance between two solutions starting from different points is studied. We find a sufficient condition for the exponential decay of the distance if the drift does not satisfy a dissipative condition on a given hyperplane.
Keywords:
SDE with discontinuous coefficients, Long-time behavior of solutions.
@article{THSP_2019_24_2_a0,
author = {O. Aryasova and A. Pilipenko},
title = {On exponential decay of a distance between solutions of an {SDE} with non-regular drift},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {1--13},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a0/}
}
TY - JOUR AU - O. Aryasova AU - A. Pilipenko TI - On exponential decay of a distance between solutions of an SDE with non-regular drift JO - Teoriâ slučajnyh processov PY - 2019 SP - 1 EP - 13 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a0/ LA - en ID - THSP_2019_24_2_a0 ER -
O. Aryasova; A. Pilipenko. On exponential decay of a distance between solutions of an SDE with non-regular drift. Teoriâ slučajnyh processov, Tome 24 (2019) no. 2, pp. 1-13. http://geodesic.mathdoc.fr/item/THSP_2019_24_2_a0/