Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2019_24_1_a1, author = {Fares Alazemi and Soukaina Douissi and Khalifa Es-Sebaiy}, title = {Berry-Esseen bounds for drift parameter estimation of discretely observed fractional {Vasicek-type} process}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {6--18}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a1/} }
TY - JOUR AU - Fares Alazemi AU - Soukaina Douissi AU - Khalifa Es-Sebaiy TI - Berry-Esseen bounds for drift parameter estimation of discretely observed fractional Vasicek-type process JO - Teoriâ slučajnyh processov PY - 2019 SP - 6 EP - 18 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a1/ LA - en ID - THSP_2019_24_1_a1 ER -
%0 Journal Article %A Fares Alazemi %A Soukaina Douissi %A Khalifa Es-Sebaiy %T Berry-Esseen bounds for drift parameter estimation of discretely observed fractional Vasicek-type process %J Teoriâ slučajnyh processov %D 2019 %P 6-18 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a1/ %G en %F THSP_2019_24_1_a1
Fares Alazemi; Soukaina Douissi; Khalifa Es-Sebaiy. Berry-Esseen bounds for drift parameter estimation of discretely observed fractional Vasicek-type process. Teoriâ slučajnyh processov, Tome 24 (2019) no. 1, pp. 6-18. http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a1/
[1] S. Bajja, K. Es-Sebaiy, L. Viitasaari, “Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean”, J. Korean Statist. Soc., 46:4 (2017), 608–622 | DOI | MR | Zbl
[2] H. Dehling, B. Franke, J. H .C. Woerner,, “Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean”, Statist. Infer. Stoch. Proc, 2016, 1–14 | MR
[3] S. Douissi, K. Es-Sebaiy, F. Viens, “Berry-Esséen bounds for parameter estimation of general Gaussian processes”, ALEA, Lat. Am. J. Probab. Math. Stat., 16 (2019), 633–664 | DOI | MR | Zbl
[4] M. El Machkouri, K. Es-Sebaiy, Y. Ouknine, “Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes”, Journal of the Korean Statistical Society, 45 (2016), 329–341 | DOI | MR | Zbl
[5] B. El Onsy, K. Es-Sebaiy, F. Viens, “Parameter Estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise”, Stochastics, 89:2 (2017), 431–468 | DOI | MR | Zbl
[6] K. Es-Sebaiy, F. Alazemi, M. Al-Foraih, “Least squares type estimation for discretely observed non-ergodic Gaussian Ornstein-Uhlenbeck processes”, Acta Mathematica Scientia, 39:4 (2019), 989–1002 | DOI | MR
[7] K. Es-Sebaiy, F. Viens, “Optimal rates for parameter estimation of stationary Gaussian processes”, Stochastic Processes and their Applications, 129:9 (2019), 3018–3054 | DOI | MR | Zbl
[8] Y. Hu, D. Nualart, “Parameter estimation for fractional Ornstein-Uhlenbeck processes”, Statist. Probab. Lett., 80 (2010), 1030–1038 | DOI | MR | Zbl
[9] Y. Hu, D. Nualart, H. Zhou, “Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter”, Statistical Inference for Stochastic Processes, 2017, 1–32 | MR
[10] S. Lohvinenko, K. Ralchenko, O. Zhuchenko, “Asymptotic properties of parameter estimators in fractional Vasicek model”, Lithuanian Journal of Statistics, 55:1 (2016), 102–111 | DOI
[11] I. Nourdin, Selected aspects of fractional Brownian motion, Series 4. Springer, Milan; Bocconi University Press, Milan, Bocconi Springer, 2012 | MR | Zbl
[12] I. Nourdin, G. Peccati, Normal approximations with Malliavin calculus : from Stein's method to universality, Cambridge Tracts in Mathematics, 192, Cambridge University Press, Cambridge, 2012 | MR | Zbl
[13] I. Nourdin, G. Peccati, “The optimal fourth moment theorem”, Proc. Amer. Math. Soc., 143 (2015), 3123–3133 | DOI | MR | Zbl
[14] I. Nourdin, T. D. Tran, “Statistical inference for Vasicek-type model driven by Hermite processes”, Stochastic Processes and their Applications, 129:10 (2019), 3774–3791 | DOI | MR | Zbl
[15] D. Nualart, The Malliavin calculus and related topics, Springer-Verlag, Berlin, 2006 | MR | Zbl
[16] D. Nualart, G. Peccati, “Central limit theorems for sequences of multiple stochastic integrals”, Ann. Probab., 33:1 (2005), 177–193 | MR | Zbl
[17] W. Xiao, J. Yu, “Asymptotic theory for estimating drift parameters in the fractional Vasicek model”, Econometric Theory, 2018, 1–34 | DOI | MR