Berry-Esseen bounds for drift parameter estimation of discretely observed fractional Vasicek-type process
Teoriâ slučajnyh processov, Tome 24 (2019) no. 1, pp. 6-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study statistical estimation problems of drift parameters of Vasicek-type processes driven by fractional Brownian motion. Based on fixed-time-step observations and using Malliavin calculus combined with the recent Nourdin-Peccati analysis, we provide estimators of the drift parameters and analyze their asymptotic behaviors. More precisely, we study the strong consistency and the asymptotic distribution of the estimators and we give the rate of their convergence in law.
Keywords: Parameter estimation, Vasicek-type process, fractional Brownian motion, Central limit theorems, Nourdin-Peccati analysis.
Mots-clés : Malliavin Calculus
@article{THSP_2019_24_1_a1,
     author = {Fares Alazemi and Soukaina Douissi and Khalifa Es-Sebaiy},
     title = {Berry-Esseen bounds for drift parameter estimation of discretely observed fractional {Vasicek-type} process},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {6--18},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a1/}
}
TY  - JOUR
AU  - Fares Alazemi
AU  - Soukaina Douissi
AU  - Khalifa Es-Sebaiy
TI  - Berry-Esseen bounds for drift parameter estimation of discretely observed fractional Vasicek-type process
JO  - Teoriâ slučajnyh processov
PY  - 2019
SP  - 6
EP  - 18
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a1/
LA  - en
ID  - THSP_2019_24_1_a1
ER  - 
%0 Journal Article
%A Fares Alazemi
%A Soukaina Douissi
%A Khalifa Es-Sebaiy
%T Berry-Esseen bounds for drift parameter estimation of discretely observed fractional Vasicek-type process
%J Teoriâ slučajnyh processov
%D 2019
%P 6-18
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a1/
%G en
%F THSP_2019_24_1_a1
Fares Alazemi; Soukaina Douissi; Khalifa Es-Sebaiy. Berry-Esseen bounds for drift parameter estimation of discretely observed fractional Vasicek-type process. Teoriâ slučajnyh processov, Tome 24 (2019) no. 1, pp. 6-18. http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a1/

[1] S. Bajja, K. Es-Sebaiy, L. Viitasaari, “Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean”, J. Korean Statist. Soc., 46:4 (2017), 608–622 | DOI | MR | Zbl

[2] H. Dehling, B. Franke, J. H .C. Woerner,, “Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean”, Statist. Infer. Stoch. Proc, 2016, 1–14 | MR

[3] S. Douissi, K. Es-Sebaiy, F. Viens, “Berry-Esséen bounds for parameter estimation of general Gaussian processes”, ALEA, Lat. Am. J. Probab. Math. Stat., 16 (2019), 633–664 | DOI | MR | Zbl

[4] M. El Machkouri, K. Es-Sebaiy, Y. Ouknine, “Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes”, Journal of the Korean Statistical Society, 45 (2016), 329–341 | DOI | MR | Zbl

[5] B. El Onsy, K. Es-Sebaiy, F. Viens, “Parameter Estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise”, Stochastics, 89:2 (2017), 431–468 | DOI | MR | Zbl

[6] K. Es-Sebaiy, F. Alazemi, M. Al-Foraih, “Least squares type estimation for discretely observed non-ergodic Gaussian Ornstein-Uhlenbeck processes”, Acta Mathematica Scientia, 39:4 (2019), 989–1002 | DOI | MR

[7] K. Es-Sebaiy, F. Viens, “Optimal rates for parameter estimation of stationary Gaussian processes”, Stochastic Processes and their Applications, 129:9 (2019), 3018–3054 | DOI | MR | Zbl

[8] Y. Hu, D. Nualart, “Parameter estimation for fractional Ornstein-Uhlenbeck processes”, Statist. Probab. Lett., 80 (2010), 1030–1038 | DOI | MR | Zbl

[9] Y. Hu, D. Nualart, H. Zhou, “Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter”, Statistical Inference for Stochastic Processes, 2017, 1–32 | MR

[10] S. Lohvinenko, K. Ralchenko, O. Zhuchenko, “Asymptotic properties of parameter estimators in fractional Vasicek model”, Lithuanian Journal of Statistics, 55:1 (2016), 102–111 | DOI

[11] I. Nourdin, Selected aspects of fractional Brownian motion, Series 4. Springer, Milan; Bocconi University Press, Milan, Bocconi Springer, 2012 | MR | Zbl

[12] I. Nourdin, G. Peccati, Normal approximations with Malliavin calculus : from Stein's method to universality, Cambridge Tracts in Mathematics, 192, Cambridge University Press, Cambridge, 2012 | MR | Zbl

[13] I. Nourdin, G. Peccati, “The optimal fourth moment theorem”, Proc. Amer. Math. Soc., 143 (2015), 3123–3133 | DOI | MR | Zbl

[14] I. Nourdin, T. D. Tran, “Statistical inference for Vasicek-type model driven by Hermite processes”, Stochastic Processes and their Applications, 129:10 (2019), 3774–3791 | DOI | MR | Zbl

[15] D. Nualart, The Malliavin calculus and related topics, Springer-Verlag, Berlin, 2006 | MR | Zbl

[16] D. Nualart, G. Peccati, “Central limit theorems for sequences of multiple stochastic integrals”, Ann. Probab., 33:1 (2005), 177–193 | MR | Zbl

[17] W. Xiao, J. Yu, “Asymptotic theory for estimating drift parameters in the fractional Vasicek model”, Econometric Theory, 2018, 1–34 | DOI | MR