Limit theorems for one statistic of FBM in the model of real observations
Teoriâ slučajnyh processov, Tome 24 (2019) no. 1, pp. 1-5.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the central limit theorem as Hurst index $H\in\left(0,\frac{3}{4}\right]$ and the non-central limit theorem as Hurst index $H\in\left(\frac{3}{4},1\right)$ for statistics of fraction Brownian motion in the model of real observations are obtained.
Keywords: Fractional Brownian motion, weak convergency, central limit theorem, Hurst parameter.
@article{THSP_2019_24_1_a0,
     author = {N. S. Aiubava},
     title = {Limit theorems for one statistic of {FBM} in the model of real observations},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--5},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a0/}
}
TY  - JOUR
AU  - N. S. Aiubava
TI  - Limit theorems for one statistic of FBM in the model of real observations
JO  - Teoriâ slučajnyh processov
PY  - 2019
SP  - 1
EP  - 5
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a0/
LA  - en
ID  - THSP_2019_24_1_a0
ER  - 
%0 Journal Article
%A N. S. Aiubava
%T Limit theorems for one statistic of FBM in the model of real observations
%J Teoriâ slučajnyh processov
%D 2019
%P 1-5
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a0/
%G en
%F THSP_2019_24_1_a0
N. S. Aiubava. Limit theorems for one statistic of FBM in the model of real observations. Teoriâ slučajnyh processov, Tome 24 (2019) no. 1, pp. 1-5. http://geodesic.mathdoc.fr/item/THSP_2019_24_1_a0/

[1] J. F. Coeurjolly, “Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study”, Journal of Statistical Software, 5 (2000), 1–53 | DOI

[2] O. O. Kurchenko, “One strong consistency estimate of the Hurst parameter of the fractional Brownian motion”, Theory Probab. Math. Statist., 2002, no. 67, 88–96 (in Ukrainian) | MR | Zbl

[3] J. C. Breton, I. Nourdin, G. Peccati, “Exact confidence intervals for the Hurst parameter of a fractional Brownian motion”, Electronic Journal of Statistics, 3 (2009), 416–425 | DOI | MR | Zbl

[4] O. O. Kurchenko, “Confidence intervals and rate convergence for the estimates of Hurst parameter of FBM”, Theory of stochastic processes, 8(24) (2002), 242–248 | MR | Zbl

[5] A. Kukush, S. Shklyar, S. Masiuk, M. Chepurny, I. Likhtarov, Regression model with measurement errors and their application for estimation of radiation risk, Kyiv, 2015 (in Ukrainian) | MR

[6] O. O. Synyavska, “Interval estimation of the fractional Brownian motion in a model with measurement error”, Theory of stochastic processes, 21(37):1 (2016), 84–90 | MR | Zbl

[7] N. S. Aiubova, “Estimation of the Hurst parameter of fractional Brownian motion in a model with measurement error”, Scientific Bulletin of Uzhgorod University. Series Maths. And Informatics, Uzhgorod: UzhNU Hoverla, 2017, no. 2 (31), 10–14 (in Ukrainian)

[8] N. Ya. Vilenkin, I. M. Gelfand, Some applications of harmonic analysis. Equipped Hilbert spaces, v. 4, FM, M:, 1961 (in Russian) | MR | Zbl

[9] N. S. Aiubova, O. O. Kurchenko, “Estimation of the Hurst parameter of fractional Brownian motion in a model of real observations”, Scientific Bulletin of Kyiv National Taras Shevchenko University. Series Maths. And Meh., 2017, no. 2 (38), 18–23 (in Ukrainian) | MR

[10] P. Breuer, P. Major, “Central limit theorems for non-linear functionals of Gaussian fields”, J. Multivariate Anal., 1983, no. 13 (3), 425–441 | MR | Zbl

[11] E. Seneta, Properly changing functions, “Nauka”, Moscow, 1985, 142 pp. (in Russian) | MR

[12] G. M. Fikhtengolts, A Course of Differential and Integral Calculus, v. 1, “Nauka”, Moscow, 1969 (in Russian)

[13] R. L. Dobrushin, P. Major, “Non-central Limit Theorems for Non-Linear Functionals of Gaussian Fields”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 50 (1979), 27–52 | DOI | MR | Zbl