Convergence of solutions of SDEs to Harris flows
Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 80-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of the approximation of a coalescing Harris flow with homeomorphic stochastic flows built as solutions to SDEs w.r.t. continuous martingales with spatial parameters in the sense of Kunita is proposed. The joint convergence of forward and backward flows as diffusions is obtained, as well as the joint convergence of forward and backward transformations of the real axe under the action of the flows.
Keywords: Harris flow, Stochastic Flow, Stochastic Differential Equations, Martingale Problem, Random Measure.
@article{THSP_2018_23_2_a7,
     author = {M. B. Vovchanskii},
     title = {Convergence of solutions of {SDEs} to {Harris} flows},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {80--91},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a7/}
}
TY  - JOUR
AU  - M. B. Vovchanskii
TI  - Convergence of solutions of SDEs to Harris flows
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 80
EP  - 91
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a7/
LA  - en
ID  - THSP_2018_23_2_a7
ER  - 
%0 Journal Article
%A M. B. Vovchanskii
%T Convergence of solutions of SDEs to Harris flows
%J Teoriâ slučajnyh processov
%D 2018
%P 80-91
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a7/
%G en
%F THSP_2018_23_2_a7
M. B. Vovchanskii. Convergence of solutions of SDEs to Harris flows. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 80-91. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a7/

[1] R. J. Adler, J. E. Taylor, Random Fields and Geometry, Springer monographs in Mathematics, 322, Springer, New York, 2007 | MR

[2] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York-London-Sydney, 1968 | MR | Zbl

[3] A. S. Cherny, H.-P. Engelbert, Singular Stochastic Differential Equations, Springer, 2004 | MR

[4] A. A. Dorogovtsev, “One Brownian Stochastic Flow”, Theory of Stochastic Processes, 10(26):34 (2004), 21–25 | MR | Zbl

[5] A. A. Dorogovtsev, O. V. Ostapenko, “Large deviations for flows of interacting Brownian motions”, Stoch. Dyn., 10:3 (2010), 315–339 | DOI | MR | Zbl

[6] A. A. Dorogovtsev, V. V. Fomichov, “The rate of weak convergence of the n-point motions of Harris flows”, Dynam. Systems Appl., 25:3 (2016), 377–392 | MR | Zbl

[7] A. A. Dorogovtsev, Measure-valued processes and stochastic flows, Mathematics and its Applications, 66, Proceedings of Institute of Mathematics of NAS of Ukraine, Kiev, 2007 (in Russian) | MR

[8] Sb. Math., 201:5-6 (2010), 645–653 | DOI | DOI | MR | Zbl

[9] D. Ferger, D. Vogel, “Weak Convergence of the Empirical Process and the Rescaled Empirical Distribution Function in the Skorokhod Product Space”, Theory Probab. Appl., 54:4 (2010), 609–625 | DOI | MR | Zbl

[10] L. R. Fontes, C. M. Newman, “The full Brownian web as scaling limit of stochastic flows”, Stoch. Dyn., 6:2 (2006), 213–228 | DOI | MR | Zbl

[11] L. R. G. Fontes, M. Isopi, C. M. Newman, K. Ravishankar, “The Brownian web: characterization and convergence”, Ann. Probab., 32:4 (2004), 2857–2883 | DOI | MR | Zbl

[12] Th. E. Harris, “Coalescing and noncoalescing stochastic flows in ${\mathbb R^1}$”, Stochastic Process. Appl., 17:2 (1984), 187–210 | DOI | MR | Zbl

[13] C. Howitt, J. Warren, “Dynamics for the Brownian web and the erosion flow”, Stochastic Processes and their Applications, 119 (2009), 2028–2051 | DOI | MR | Zbl

[14] O. Kallenberg, Foundations of modern probability, Probability and its Applications, Second edition, Springer-Verlag, New York, 2002 | DOI | MR | Zbl

[15] O. Kallenberg, Random measures, Fourth edition, Academic Press, Inc., London; Akademie-Verlag, Berlin, 1986 | MR

[16] Ya. A. Korenovskaya, “Properties os strong random operators generated by the Arratia flow”, Ukrainian Mathematical Journal, 69:2 (2017), 186–204 | DOI | MR | Zbl

[17] P. Kotelenez, Stochastic ordinary and stochastic partial differential equations. Transition from microscopic to macroscopic equations, Stochastic Modelling and Applied Probability, 58, Springer, New York, 2008 | MR | Zbl

[18] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Studies in Advanced Mathematics, 24, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[19] H. Matsumoto, “Coalescing stochastic flows on the real line”, Osaka J. Math., 26:1 (1989), 139–158 | MR | Zbl

[20] N. I. Portenko, A. V. Skorokhod, V. M. Shurenkov, Markov Processes, Itogi Nauki i Tekhniki, 46, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 (in Russian) | MR

[21] D. Toth, W. Werner, “The true self-repelling motion”, Probab. Theory Related Fields, 111:3 (1998), 375–452 | DOI | MR | Zbl

[22] B. Tsirelson, “Nonclassical stochastic flows and continuous products”, Probab. Surv., 1:2004, 173–298 | MR | Zbl

[23] J. Warren, S. Watanabe, “On Spectra of Noises Associated with Harris flows”, Stochastic analysis and related topics in Kyoto, Adv. Stud. Pure Math., 41, Math. Soc. Japan, Tokyo, 2004, 351–373 | MR | Zbl