Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2018_23_2_a7, author = {M. B. Vovchanskii}, title = {Convergence of solutions of {SDEs} to {Harris} flows}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {80--91}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a7/} }
M. B. Vovchanskii. Convergence of solutions of SDEs to Harris flows. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 80-91. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a7/
[1] R. J. Adler, J. E. Taylor, Random Fields and Geometry, Springer monographs in Mathematics, 322, Springer, New York, 2007 | MR
[2] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York-London-Sydney, 1968 | MR | Zbl
[3] A. S. Cherny, H.-P. Engelbert, Singular Stochastic Differential Equations, Springer, 2004 | MR
[4] A. A. Dorogovtsev, “One Brownian Stochastic Flow”, Theory of Stochastic Processes, 10(26):34 (2004), 21–25 | MR | Zbl
[5] A. A. Dorogovtsev, O. V. Ostapenko, “Large deviations for flows of interacting Brownian motions”, Stoch. Dyn., 10:3 (2010), 315–339 | DOI | MR | Zbl
[6] A. A. Dorogovtsev, V. V. Fomichov, “The rate of weak convergence of the n-point motions of Harris flows”, Dynam. Systems Appl., 25:3 (2016), 377–392 | MR | Zbl
[7] A. A. Dorogovtsev, Measure-valued processes and stochastic flows, Mathematics and its Applications, 66, Proceedings of Institute of Mathematics of NAS of Ukraine, Kiev, 2007 (in Russian) | MR
[8] Sb. Math., 201:5-6 (2010), 645–653 | DOI | DOI | MR | Zbl
[9] D. Ferger, D. Vogel, “Weak Convergence of the Empirical Process and the Rescaled Empirical Distribution Function in the Skorokhod Product Space”, Theory Probab. Appl., 54:4 (2010), 609–625 | DOI | MR | Zbl
[10] L. R. Fontes, C. M. Newman, “The full Brownian web as scaling limit of stochastic flows”, Stoch. Dyn., 6:2 (2006), 213–228 | DOI | MR | Zbl
[11] L. R. G. Fontes, M. Isopi, C. M. Newman, K. Ravishankar, “The Brownian web: characterization and convergence”, Ann. Probab., 32:4 (2004), 2857–2883 | DOI | MR | Zbl
[12] Th. E. Harris, “Coalescing and noncoalescing stochastic flows in ${\mathbb R^1}$”, Stochastic Process. Appl., 17:2 (1984), 187–210 | DOI | MR | Zbl
[13] C. Howitt, J. Warren, “Dynamics for the Brownian web and the erosion flow”, Stochastic Processes and their Applications, 119 (2009), 2028–2051 | DOI | MR | Zbl
[14] O. Kallenberg, Foundations of modern probability, Probability and its Applications, Second edition, Springer-Verlag, New York, 2002 | DOI | MR | Zbl
[15] O. Kallenberg, Random measures, Fourth edition, Academic Press, Inc., London; Akademie-Verlag, Berlin, 1986 | MR
[16] Ya. A. Korenovskaya, “Properties os strong random operators generated by the Arratia flow”, Ukrainian Mathematical Journal, 69:2 (2017), 186–204 | DOI | MR | Zbl
[17] P. Kotelenez, Stochastic ordinary and stochastic partial differential equations. Transition from microscopic to macroscopic equations, Stochastic Modelling and Applied Probability, 58, Springer, New York, 2008 | MR | Zbl
[18] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Studies in Advanced Mathematics, 24, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[19] H. Matsumoto, “Coalescing stochastic flows on the real line”, Osaka J. Math., 26:1 (1989), 139–158 | MR | Zbl
[20] N. I. Portenko, A. V. Skorokhod, V. M. Shurenkov, Markov Processes, Itogi Nauki i Tekhniki, 46, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 (in Russian) | MR
[21] D. Toth, W. Werner, “The true self-repelling motion”, Probab. Theory Related Fields, 111:3 (1998), 375–452 | DOI | MR | Zbl
[22] B. Tsirelson, “Nonclassical stochastic flows and continuous products”, Probab. Surv., 1:2004, 173–298 | MR | Zbl
[23] J. Warren, S. Watanabe, “On Spectra of Noises Associated with Harris flows”, Stochastic analysis and related topics in Kyoto, Adv. Stud. Pure Math., 41, Math. Soc. Japan, Tokyo, 2004, 351–373 | MR | Zbl