Transportation costs for optimal and triangular transformations of Gaussian measures
Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 21-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study connections between transportation costs (with the quadratic Kantorovich distance) for Monge optimal mappings and increasing triangular mappings between Gaussian measures. We show that the second cost cannot be estimated by the first cost with a dimension-free coefficient, but under certain restrictions a comparison is possible.
Keywords: Gaussian measure, Monge problem, Kantorovich distance, triangular mapping.
@article{THSP_2018_23_2_a2,
     author = {Dmitry V. Bukin and Elena P. Krugova},
     title = {Transportation costs for optimal and triangular transformations of {Gaussian} measures},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a2/}
}
TY  - JOUR
AU  - Dmitry V. Bukin
AU  - Elena P. Krugova
TI  - Transportation costs for optimal and triangular transformations of Gaussian measures
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 21
EP  - 32
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a2/
LA  - en
ID  - THSP_2018_23_2_a2
ER  - 
%0 Journal Article
%A Dmitry V. Bukin
%A Elena P. Krugova
%T Transportation costs for optimal and triangular transformations of Gaussian measures
%J Teoriâ slučajnyh processov
%D 2018
%P 21-32
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a2/
%G en
%F THSP_2018_23_2_a2
Dmitry V. Bukin; Elena P. Krugova. Transportation costs for optimal and triangular transformations of Gaussian measures. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 21-32. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a2/

[1] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Lecture Notes in Math., 2062 (2013), 1–155 | DOI | MR

[2] V. I. Bogachev, Gaussian measures, Amer. Math. Soc., Providence, Rhode Island, 1998 | MR | Zbl

[3] V. I. Bogachev, Measure theory, v. 1, 2, Springer, Berlin, 2007 | MR | Zbl

[4] V. I. Bogachev, Differentiable measures and the Malliavin calculus, Amer. Math. Soc., Providence, Rhode Island, 2010 | MR | Zbl

[5] V. I. Bogachev, Weak convergence of measures, Amer. Math. Soc., Providence, Rhode Island, 2018 | MR | Zbl

[6] Dokl. Math., 70:1 (2004), 524–528 | MR | Zbl

[7] Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | DOI | MR | Zbl

[8] Dokl. Math., 69:3 (2004), 438–442 | MR | Zbl

[9] Sbornik Math., 196:3 (2005), 309–335 | DOI | MR | Zbl

[10] D. B. Bukin, “On the Monge and Kantorovich problems for distributions of diffusion processes”, Math. Notes, 96:5-6 (2014), 864–870 | DOI | MR | Zbl

[11] Math. Notes, 100:5-6 (2016), 660–665 | DOI | DOI | MR | Zbl

[12] E. Chevallier, E. Kalunga, J. Angulo, “Kernel density estimation on spaces of Gaussian distributions and symmetric positive definite matrices”, SIAM J. Imaging Sciences, 10:1 (2017), 191–215 | DOI | MR | Zbl

[13] D. Feyel, A. S. Üstünel, “Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space”, Probab. Theory Relat. Fields, 128:3 (2004), 347–385 | DOI | MR | Zbl

[14] W. Gangbo, R. J. McCann, “The geometry of optimal transportation”, Acta Math., 177 (1996), 113–161 | DOI | MR | Zbl

[15] C. R. Givens, R. M. Shortt, “A class of Wasserstein metrics for probability distributions”, Michigan Math. J., 31:2 (1984), 231–240 | DOI | MR | Zbl

[16] R. Horn, C. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985 | MR | Zbl

[17] C. R. (Doklady) Acad. Sci. URSS, 37:4 (1942), 199–201 ; J. Math. Sciences, 133:4 (2006), 1381–1382 | DOI | MR | MR | Zbl

[18] Doklady Math., 70:1 (2004), 524–528 | MR | Zbl | Zbl

[19] A.V. Kolesnikov, “Convexity inequalities and optimal transport of infinite-dimensional measures”, J. Math. Pures Appl., 83:11 (2004), 1373–1404 | DOI | MR | Zbl

[20] M. Ledoux, The concentration of measure phenomenon, Amer. Math. Soc, Providence, Rhode Island, 2001 | MR | Zbl

[21] M. Lovrić, M. Min-Oo, E.A. Ruh, “Multivariate normal distributions parametrized as a Riemannian symmetric space”, J. Multivariate Anal., 74:1 (2000), 36–48 | MR | Zbl

[22] R.J. McCann, “Existence and uniqueness of monotone measure-preserving maps”, Duke Math. J., 80 (1995), 309–323 | DOI | MR | Zbl

[23] K. Modin, “Geometry of matrix decompositions seen through optimal transport and information geometry”, J. Geom. Mech., 9:3 (2017), 335–390 | DOI | MR | Zbl

[24] L.T. Skovgaard, “A Riemannian geometry of the multivariate normal model”, Scand. J. Statist., 11 (1984), 211–223 | MR | Zbl

[25] A. Takatsu, “On Wasserstein geometry of Gaussian measures”, Probabilistic approach to geometry, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010, 463–472 | DOI | MR | Zbl

[26] A. Takatsu, “Wasserstein geometry of Gaussian measures”, Osaka J. Math., 48:4 (2011), 1005–1026 | MR | Zbl

[27] M. Talagrand, “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6:3 (1996), 587–600 | DOI | MR | Zbl

[28] C. Villani, Topics in optimal transportation, Amer. Math. Soc., Providence, Rhode Island, 2003 | MR | Zbl

[29] C. Villani, Optimal transport, old and new, Springer, New York, 2009 | MR | Zbl