Transportation costs for optimal and triangular transformations of Gaussian measures
Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 21-32

Voir la notice de l'article provenant de la source Math-Net.Ru

We study connections between transportation costs (with the quadratic Kantorovich distance) for Monge optimal mappings and increasing triangular mappings between Gaussian measures. We show that the second cost cannot be estimated by the first cost with a dimension-free coefficient, but under certain restrictions a comparison is possible.
Keywords: Gaussian measure, Monge problem, Kantorovich distance, triangular mapping.
@article{THSP_2018_23_2_a2,
     author = {Dmitry V. Bukin and Elena P. Krugova},
     title = {Transportation costs for optimal and triangular transformations of {Gaussian} measures},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a2/}
}
TY  - JOUR
AU  - Dmitry V. Bukin
AU  - Elena P. Krugova
TI  - Transportation costs for optimal and triangular transformations of Gaussian measures
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 21
EP  - 32
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a2/
LA  - en
ID  - THSP_2018_23_2_a2
ER  - 
%0 Journal Article
%A Dmitry V. Bukin
%A Elena P. Krugova
%T Transportation costs for optimal and triangular transformations of Gaussian measures
%J Teoriâ slučajnyh processov
%D 2018
%P 21-32
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a2/
%G en
%F THSP_2018_23_2_a2
Dmitry V. Bukin; Elena P. Krugova. Transportation costs for optimal and triangular transformations of Gaussian measures. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 21-32. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a2/