Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2018_23_2_a2, author = {Dmitry V. Bukin and Elena P. Krugova}, title = {Transportation costs for optimal and triangular transformations of {Gaussian} measures}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {21--32}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a2/} }
TY - JOUR AU - Dmitry V. Bukin AU - Elena P. Krugova TI - Transportation costs for optimal and triangular transformations of Gaussian measures JO - Teoriâ slučajnyh processov PY - 2018 SP - 21 EP - 32 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a2/ LA - en ID - THSP_2018_23_2_a2 ER -
Dmitry V. Bukin; Elena P. Krugova. Transportation costs for optimal and triangular transformations of Gaussian measures. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 21-32. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a2/
[1] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Lecture Notes in Math., 2062 (2013), 1–155 | DOI | MR
[2] V. I. Bogachev, Gaussian measures, Amer. Math. Soc., Providence, Rhode Island, 1998 | MR | Zbl
[3] V. I. Bogachev, Measure theory, v. 1, 2, Springer, Berlin, 2007 | MR | Zbl
[4] V. I. Bogachev, Differentiable measures and the Malliavin calculus, Amer. Math. Soc., Providence, Rhode Island, 2010 | MR | Zbl
[5] V. I. Bogachev, Weak convergence of measures, Amer. Math. Soc., Providence, Rhode Island, 2018 | MR | Zbl
[6] Dokl. Math., 70:1 (2004), 524–528 | MR | Zbl
[7] Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | DOI | MR | Zbl
[8] Dokl. Math., 69:3 (2004), 438–442 | MR | Zbl
[9] Sbornik Math., 196:3 (2005), 309–335 | DOI | MR | Zbl
[10] D. B. Bukin, “On the Monge and Kantorovich problems for distributions of diffusion processes”, Math. Notes, 96:5-6 (2014), 864–870 | DOI | MR | Zbl
[11] Math. Notes, 100:5-6 (2016), 660–665 | DOI | DOI | MR | Zbl
[12] E. Chevallier, E. Kalunga, J. Angulo, “Kernel density estimation on spaces of Gaussian distributions and symmetric positive definite matrices”, SIAM J. Imaging Sciences, 10:1 (2017), 191–215 | DOI | MR | Zbl
[13] D. Feyel, A. S. Üstünel, “Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space”, Probab. Theory Relat. Fields, 128:3 (2004), 347–385 | DOI | MR | Zbl
[14] W. Gangbo, R. J. McCann, “The geometry of optimal transportation”, Acta Math., 177 (1996), 113–161 | DOI | MR | Zbl
[15] C. R. Givens, R. M. Shortt, “A class of Wasserstein metrics for probability distributions”, Michigan Math. J., 31:2 (1984), 231–240 | DOI | MR | Zbl
[16] R. Horn, C. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985 | MR | Zbl
[17] C. R. (Doklady) Acad. Sci. URSS, 37:4 (1942), 199–201 ; J. Math. Sciences, 133:4 (2006), 1381–1382 | DOI | MR | MR | Zbl
[18] Doklady Math., 70:1 (2004), 524–528 | MR | Zbl | Zbl
[19] A.V. Kolesnikov, “Convexity inequalities and optimal transport of infinite-dimensional measures”, J. Math. Pures Appl., 83:11 (2004), 1373–1404 | DOI | MR | Zbl
[20] M. Ledoux, The concentration of measure phenomenon, Amer. Math. Soc, Providence, Rhode Island, 2001 | MR | Zbl
[21] M. Lovrić, M. Min-Oo, E.A. Ruh, “Multivariate normal distributions parametrized as a Riemannian symmetric space”, J. Multivariate Anal., 74:1 (2000), 36–48 | MR | Zbl
[22] R.J. McCann, “Existence and uniqueness of monotone measure-preserving maps”, Duke Math. J., 80 (1995), 309–323 | DOI | MR | Zbl
[23] K. Modin, “Geometry of matrix decompositions seen through optimal transport and information geometry”, J. Geom. Mech., 9:3 (2017), 335–390 | DOI | MR | Zbl
[24] L.T. Skovgaard, “A Riemannian geometry of the multivariate normal model”, Scand. J. Statist., 11 (1984), 211–223 | MR | Zbl
[25] A. Takatsu, “On Wasserstein geometry of Gaussian measures”, Probabilistic approach to geometry, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010, 463–472 | DOI | MR | Zbl
[26] A. Takatsu, “Wasserstein geometry of Gaussian measures”, Osaka J. Math., 48:4 (2011), 1005–1026 | MR | Zbl
[27] M. Talagrand, “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6:3 (1996), 587–600 | DOI | MR | Zbl
[28] C. Villani, Topics in optimal transportation, Amer. Math. Soc., Providence, Rhode Island, 2003 | MR | Zbl
[29] C. Villani, Optimal transport, old and new, Springer, New York, 2009 | MR | Zbl