On a property of joint terminal distributions of locally integrable increasing processes and their compensators
Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 7-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that a joint distribution of a locally integrable increasing process $X^{\circ}$ and its compensator $A^{\circ}$ at a terminal moment of time can be realized as a joint terminal distribution of another locally integrable increasing process $X^{\star}$ and its compensator $A^{\star}$, $A^{\star}$ being continuous.
Keywords: increasing process, compensator, Doob–Meyer decomposition.
Mots-clés : terminal joint distribution
@article{THSP_2018_23_2_a1,
     author = {D. A. Borzykh},
     title = {On a property of joint terminal distributions of locally integrable increasing processes and their compensators},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a1/}
}
TY  - JOUR
AU  - D. A. Borzykh
TI  - On a property of joint terminal distributions of locally integrable increasing processes and their compensators
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 7
EP  - 20
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a1/
LA  - en
ID  - THSP_2018_23_2_a1
ER  - 
%0 Journal Article
%A D. A. Borzykh
%T On a property of joint terminal distributions of locally integrable increasing processes and their compensators
%J Teoriâ slučajnyh processov
%D 2018
%P 7-20
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a1/
%G en
%F THSP_2018_23_2_a1
D. A. Borzykh. On a property of joint terminal distributions of locally integrable increasing processes and their compensators. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 7-20. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a1/

[1] A. A. Gushchin, “On possible relations between an increasing process and its compensator in the non-integrable case”, Russian Mathematical Surveys, 73:5 (2018), 928–930 | DOI | MR | Zbl

[2] A. A. Gushchin, “The Joint Law of Terminal Values of a Nonnegative Submartingale and Its Compensator”, Theory of Probability and Its Applications, 62:2 (2018), 216–235 | DOI | MR

[3] J. Jacod, Calcul stochastique et problèmes de martingales, Springer, 1979 | MR | Zbl

[4] A. Klenke, Probability Theory: A Comprehensive Course, Springer, 2014 | MR | Zbl

[5] R. S. Liptser, A. N. Shiryaev, Theory of Martingales, Kluwer Academic Publishers Group, 1989 | MR | Zbl

[6] J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-day, San Francisco, 1965 | MR | Zbl

[7] A. N. Shiryaev, Probability-1, Springer, 2016 | MR | Zbl

[8] J. Yeh, Martingales and Stochastic analysis, World Scientific, Singapore, 1995 | MR | Zbl