Mots-clés : terminal joint distribution
@article{THSP_2018_23_2_a1,
author = {D. A. Borzykh},
title = {On a property of joint terminal distributions of locally integrable increasing processes and their compensators},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {7--20},
year = {2018},
volume = {23},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a1/}
}
TY - JOUR AU - D. A. Borzykh TI - On a property of joint terminal distributions of locally integrable increasing processes and their compensators JO - Teoriâ slučajnyh processov PY - 2018 SP - 7 EP - 20 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a1/ LA - en ID - THSP_2018_23_2_a1 ER -
D. A. Borzykh. On a property of joint terminal distributions of locally integrable increasing processes and their compensators. Teoriâ slučajnyh processov, Tome 23 (2018) no. 2, pp. 7-20. http://geodesic.mathdoc.fr/item/THSP_2018_23_2_a1/
[1] A. A. Gushchin, “On possible relations between an increasing process and its compensator in the non-integrable case”, Russian Mathematical Surveys, 73:5 (2018), 928–930 | DOI | MR | Zbl
[2] A. A. Gushchin, “The Joint Law of Terminal Values of a Nonnegative Submartingale and Its Compensator”, Theory of Probability and Its Applications, 62:2 (2018), 216–235 | DOI | MR
[3] J. Jacod, Calcul stochastique et problèmes de martingales, Springer, 1979 | MR | Zbl
[4] A. Klenke, Probability Theory: A Comprehensive Course, Springer, 2014 | MR | Zbl
[5] R. S. Liptser, A. N. Shiryaev, Theory of Martingales, Kluwer Academic Publishers Group, 1989 | MR | Zbl
[6] J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-day, San Francisco, 1965 | MR | Zbl
[7] A. N. Shiryaev, Probability-1, Springer, 2016 | MR | Zbl
[8] J. Yeh, Martingales and Stochastic analysis, World Scientific, Singapore, 1995 | MR | Zbl