On constructing a sticky membrane located on a~given surface for a~symmetric $\alpha$-stable process
Teoriâ slučajnyh processov, Tome 23 (2018) no. 1, pp. 66-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a symmetric $\alpha$-stable stochastic process with $\alpha\in(1,2)$ in a Euclidean space, a membrane located on a fixed bounded closed surface $S$ is constructed in such a way that the points of the surface possess the property of delaying the process with some given positive coefficient $(p(x))_{x\in S}$. In other words, the points of $S$ are sticky for the process constructed. We show that this process is associated with some initial-boundary value problem for pseudo-differential equations related to a symmetric $\alpha$-stable process.
Keywords: Stable process, Random change of time, Initial-boundary value problem, Pseudo-differential equation.
Mots-clés : Membranes, Feynman-Kac formula
@article{THSP_2018_23_1_a4,
     author = {M. M. Osypchuk and M. I. Portenko},
     title = {On constructing a sticky membrane located on a~given surface for a~symmetric $\alpha$-stable process},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {66--72},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a4/}
}
TY  - JOUR
AU  - M. M. Osypchuk
AU  - M. I. Portenko
TI  - On constructing a sticky membrane located on a~given surface for a~symmetric $\alpha$-stable process
JO  - Teoriâ slučajnyh processov
PY  - 2018
SP  - 66
EP  - 72
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a4/
LA  - en
ID  - THSP_2018_23_1_a4
ER  - 
%0 Journal Article
%A M. M. Osypchuk
%A M. I. Portenko
%T On constructing a sticky membrane located on a~given surface for a~symmetric $\alpha$-stable process
%J Teoriâ slučajnyh processov
%D 2018
%P 66-72
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a4/
%G en
%F THSP_2018_23_1_a4
M. M. Osypchuk; M. I. Portenko. On constructing a sticky membrane located on a~given surface for a~symmetric $\alpha$-stable process. Teoriâ slučajnyh processov, Tome 23 (2018) no. 1, pp. 66-72. http://geodesic.mathdoc.fr/item/THSP_2018_23_1_a4/

[1] O. V. Aryasova, M. I. Portenko, “One class of multidimensional stochastic differential equations having no property of weak uniqueness of a solution”, Theory of Stochastic Process, 11(27):3-4 (2005), 14–28 | MR | Zbl

[2] O. V. Aryasova, M. I. Portenko, “One example of a random change of time that transforms a generalized diffusion process into an ordinary one”, Theory of Stochastic Process, 13(29):3 (2007), 12–21 | MR | Zbl

[3] v. I, Academic Press, New-York, 1965 ; v. II, Springer-Verlag, Berlin, 1965 | Zbl

[4] S. D. Eidelman, S. D. Ivasyshen, A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-differential Equations of Parabolic Type, Operator Theory Advances and Applications, 152, Birkhäuser Verlag, 2004 | MR | Zbl

[5] Springer-Verlag, 1979 | MR

[6] B. I. Kopytko, R. V. Shevchuk, “On Feller semigroups associated with one-dimensional diffusion processes with membranes”, Theory of Stochastic Processes, 21(37):1 (2016), 31–44 | MR | Zbl

[7] Amer. Math. Soc., Providence, R. I., 1968 | MR | Zbl

[8] Ukrain. Math. J., 67:11 (2016), 1704–1720 | DOI | MR | Zbl

[9] M. M. Osypchuk, M. I. Portenko, “On constructing some membranes for a symmetric $\alpha$-stable process”, Communications on Stochastic Analysis, 11:1 (2017), 11–20 | DOI | MR

[10] Ukrain. Math. J., 69:10 (2018), 1631–1650 | DOI | MR | MR | Zbl