Moment measures and stability for Gaussian inequalities
Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 47-61

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\gamma$ be the standard Gaussian measure on $\mathbb{R}^n$ and let $\mathcal{P}_{\gamma}$ be the space of probability measures that are absolutely continuous with respect to $\gamma$. We study lower bounds for the functional $\mathcal{F}_{\gamma}(\mu) = {\rm Ent}(\mu) - \frac{1}{2} W^2_2(\mu, \nu)$, where $\mu \in \mathcal{P}_{\gamma}, \nu \in \mathcal{P}_{\gamma}$, ${\rm Ent}(\mu) = \int \log\bigl( \frac{\mu}{\gamma}\bigr) d \mu$ is the relative Gaussian entropy, and $W_2$ is the quadratic Kantorovich distance. The minimizers of $\mathcal{F}_{\gamma}$ are solutions to a dimension-free Gaussian analog of the (real) Kähler–Einstein equation. We show that $\mathcal{F}_{\gamma}(\mu) $ is bounded from below under the assumption that the Gaussian Fisher information of $\nu$ is finite and prove a priori estimates for the minimizers. Our approach relies on certain stability estimates for the Gaussian log-Sobolev and Talagrand transportation inequalities.
Keywords: Gaussian inequalities, Kähler-Einstein equation, moment measure.
Mots-clés : optimal transportation
@article{THSP_2017_22_2_a4,
     author = {Alexander V. Kolesnikov and Egor D. Kosov},
     title = {Moment measures and stability for {Gaussian} inequalities},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {47--61},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a4/}
}
TY  - JOUR
AU  - Alexander V. Kolesnikov
AU  - Egor D. Kosov
TI  - Moment measures and stability for Gaussian inequalities
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 47
EP  - 61
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a4/
LA  - en
ID  - THSP_2017_22_2_a4
ER  - 
%0 Journal Article
%A Alexander V. Kolesnikov
%A Egor D. Kosov
%T Moment measures and stability for Gaussian inequalities
%J Teoriâ slučajnyh processov
%D 2017
%P 47-61
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a4/
%G en
%F THSP_2017_22_2_a4
Alexander V. Kolesnikov; Egor D. Kosov. Moment measures and stability for Gaussian inequalities. Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 47-61. http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a4/