Gaussian approximation for residuals of stationary autoregressive process in H\"{o}lder norm
Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 19-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper treats the hölderian approximation for partial sums process of stationary autoregressive residuals (AR(p), $p \geq 1$). We consider the polygonal smoothed process of these partial sums and we prove the Hölder convergence of this sequence of processes to the Brownian motion for any order $\alpha\frac{1}{2}$. A statistical application of this convergence to detect epidemic change and simulation results are also presented.
Keywords: Autoregressive model, Brownian motion, Hölder space, invariance principle, partial sums process, residuals.
@article{THSP_2017_22_2_a2,
     author = {K. Ime\c{c}aoudene and D. Hamadouche},
     title = {Gaussian approximation for residuals of stationary autoregressive process in {H\"{o}lder} norm},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {19--33},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a2/}
}
TY  - JOUR
AU  - K. Imeçaoudene
AU  - D. Hamadouche
TI  - Gaussian approximation for residuals of stationary autoregressive process in H\"{o}lder norm
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 19
EP  - 33
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a2/
LA  - en
ID  - THSP_2017_22_2_a2
ER  - 
%0 Journal Article
%A K. Imeçaoudene
%A D. Hamadouche
%T Gaussian approximation for residuals of stationary autoregressive process in H\"{o}lder norm
%J Teoriâ slučajnyh processov
%D 2017
%P 19-33
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a2/
%G en
%F THSP_2017_22_2_a2
K. Imeçaoudene; D. Hamadouche. Gaussian approximation for residuals of stationary autoregressive process in H\"{o}lder norm. Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 19-33. http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a2/

[1] J. Bai, “On the partial sums of residuals in autoregressive and moving average models”, J. Time Ser. Anal., 14 (1993), 247–260 | DOI | MR | Zbl

[2] P. Billingsley, Convergence of probability Measures, Wiley, New York, 1968 | MR | Zbl

[3] D. Bloduc, Deux procédures d'estimation en présence d'autocorrelation spatiale dans les résidus de regression, Thèse en vue de l'obtention du grade de philosophiae doctor (PH. D.), 1985 | MR

[4] P. J. Brockwell, R. A. Davis, Time Series: Theory and Methods, Springer-Verlag, New York, 1987 | MR | Zbl

[5] Z. Ciesielski, “On the isomorphisms of the spaces $H_{\alpha \text{}}$ and $m$”, Bull. Acad. Pol. Sci. Math. Astronom. Phys., 8 (1960), 217–222 | MR | Zbl

[6] M. Csörgő, L. Horváth, Limits theorems in change-point analysis, John Wiley sons, New York, 1997 | MR

[7] R. Davidson, J. G. MacKinnon, “Graphical methods for investigating the size and power of hypothesis tests”, The Manchester School, 66 (1998), 1–26 | DOI

[8] C. Gourieroux, A. Monfort, Cours de séries temporelles, Economie et Statistiques avancées, Economica, Paris, 1983

[9] D. Hamadouche, “Invariance principles in Hölder spaces”, Portugaliae Mathematica, 57.2 (2000), 127–151 | MR | Zbl

[10] D. Hamadouche, “Weak convergence of smoothed empirical process in Hölder space”, Statist. Probab. Letters, 36 (1998), 393–400 | DOI | MR | Zbl

[11] L. Horváth, “Change in autoregressive processes”, Stoch. Proc. Appl., 44 (1993), 221–242 | DOI | MR | Zbl

[12] V. K. Jandhyala, I. B. MacNeill, “Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times”, Stoch. Proc. Appl., 33 (1989), 309–323 | DOI | MR | Zbl

[13] R. J. Kulperger, “On the residuals of autoregressive processes and polynomial regression”, Stoch. Proc. Appl., 21 (1985), 107–118 | DOI | MR | Zbl

[14] J. Lamperti, “On convergence of stochastic processes”, Trans. Amer. Math. Soc., 104 (1962), 430–435 | DOI | MR | Zbl

[15] I. B. MacNeill, “Properties of sequences of partial sums of polynomial regression residuals with applications to tests for change in regression at unknown times”, Ann. Statis., 6:2 (1978), 422–433 | DOI | MR | Zbl

[16] I. B. MacNeill, “Limit processes for sequences of partial sums of regression residuals”, Ann. Probab., 6:4 (1978), 695–698 | DOI | MR | Zbl

[17] I. B. MacNeil, V. K. Jandhyala, “The residual process for non-linear regression”, J. Appl. Probab., 22:4 (1985), 957–963 | DOI | MR | Zbl

[18] J. Markevičiūtė, A. Račkauskas, Ch. Suquet, “Functional limit theorems for sums of nearly nonstationary processes”, Lith. Math. J., 52:3 (2012), 282–296 | DOI | MR | Zbl

[19] A. Račkauskas, “Hölderian properties of partial sums of regression residuals”, Metrika, 63 (2006), 191–205 | DOI | MR

[20] A. Račkauskas, Ch. Suquet, “Necessary and sufficient condition for the hölderian functional central limit theorem”, Journal of theoretical Probability, 17:1 (2004), 221–243 | DOI | MR

[21] A. Račkauskas, Ch. Suquet, “Hölder norm test statistics for epidemic change”, J. Statist. Plann. Infer., 126 (2004), 495–520 | DOI | MR

[22] I. Rastené, A. Račkauskas, “Hölder convergence of autoregression residuals partial sum processes”, Lith. Math. J., 48:4 (2008), 438–450 | DOI | MR | Zbl