On Gaussian conditional measures depending on a~parameter
Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 1-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a family of Gaussian measures $\mu_\alpha$ on the product of two Souslin locally convex spaces $X$ and $Y$ depends measurably on a parameter $\alpha$, then it is possible to find conditional measures $\mu_\alpha^y$ on $X$ jointly measurable in $y$ and $\alpha$.
Keywords: Gaussian measure, conditional measure, measurable dependence on a parameter.
@article{THSP_2017_22_2_a0,
     author = {Georgii A. Alekseev and Ekaterina V. Yurova},
     title = {On {Gaussian} conditional measures depending on a~parameter},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a0/}
}
TY  - JOUR
AU  - Georgii A. Alekseev
AU  - Ekaterina V. Yurova
TI  - On Gaussian conditional measures depending on a~parameter
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 1
EP  - 7
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a0/
LA  - en
ID  - THSP_2017_22_2_a0
ER  - 
%0 Journal Article
%A Georgii A. Alekseev
%A Ekaterina V. Yurova
%T On Gaussian conditional measures depending on a~parameter
%J Teoriâ slučajnyh processov
%D 2017
%P 1-7
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a0/
%G en
%F THSP_2017_22_2_a0
Georgii A. Alekseev; Ekaterina V. Yurova. On Gaussian conditional measures depending on a~parameter. Teoriâ slučajnyh processov, Tome 22 (2017) no. 2, pp. 1-7. http://geodesic.mathdoc.fr/item/THSP_2017_22_2_a0/

[1] V. I. Bogachev, Gaussian measures, Amer. Math. Soc., Rhode Island, Providence, 1998 | MR | Zbl

[2] V. I. Bogachev, Measure theory, v. 1, 2, Springer, New York, 2007 | MR | Zbl

[3] V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces”, Real and Stochastic Analysis. Current Trends, ed. M. M. Rao, World Sci., Singapore, 2014, 1–83 | MR | Zbl

[4] V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | MR | Zbl

[5] V. I. Bogachev, O. G. Smolyanov, Topological vector spaces and their applications, Springer, New York, 2017 | MR | Zbl

[6] M. Hairer, A. M. Stuart, J. Voss, P. Wiberg, “Analysis of SPDEs arising in path sampling. I. The Gaussian case”, Commun. Math. Sci., 3:4 (2005), 587–603 | DOI | MR | Zbl

[7] T. LaGatta, “Continuous disintegrations of Gaussian processes”, Theory Probab. Appl., 57:1 (2013), 151–162 | DOI | MR | Zbl

[8] Doklady Math., 94:2 (2016), 493–496 | DOI | MR | Zbl

[9] V. Tarieladze, N. Vakhania, “Disintegration of Gaussian measures and average-case optimal algorithms”, J. Complexity, 23:4-6 (2007), 851–866 | DOI | MR | Zbl

[10] C. Villani, Optimal transport, old and new, Springer, New York, 2009 | MR | Zbl