$\mathbf{p}$-Majorizing quadratic stochastic operators
Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 81-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce a new class of the so-called $\mathbf{p}$-majorizing quadratic stochastic operators which is the generalization of the class of quadratic doubly stochastic operators. We provide a criterion for the regularity of $\mathbf{p}$-majorizing quadratic stochastic operators acting on 2D simplex. Some relevant examples are also provided.
Keywords: Quadratic stochastic operator, $\mathbf{p}$-majorization, cubic stochastic matrix.
@article{THSP_2017_22_1_a7,
     author = {N. A. Yusof and M. Saburov},
     title = {$\mathbf{p}${-Majorizing} quadratic stochastic operators},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {81--88},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a7/}
}
TY  - JOUR
AU  - N. A. Yusof
AU  - M. Saburov
TI  - $\mathbf{p}$-Majorizing quadratic stochastic operators
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 81
EP  - 88
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a7/
LA  - en
ID  - THSP_2017_22_1_a7
ER  - 
%0 Journal Article
%A N. A. Yusof
%A M. Saburov
%T $\mathbf{p}$-Majorizing quadratic stochastic operators
%J Teoriâ slučajnyh processov
%D 2017
%P 81-88
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a7/
%G en
%F THSP_2017_22_1_a7
N. A. Yusof; M. Saburov. $\mathbf{p}$-Majorizing quadratic stochastic operators. Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 81-88. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a7/

[1] N. Ganikhodjaev, M. Saburov, U. Jamilov, “Mendelian and Non-Mendelian quadratic operators”, App. Math. Info. Sci., 7:5 (2013), 1721–1729 | DOI | MR

[2] R. Ganikhodzhaev, “On the definition of quadratic doubly stochastic operators”, Russian Math. Surveys, 48 (1992), 244–246 | DOI | MR

[3] R. Ganikhodzhaev, F. Mukhamedov, U. Rozikov, “Quadratic stochastic operators and processes: Results and Open Problems”, Inf. Dim. Anal. Quantum Prob. Rel. Top. (IDAQPRT), 14:2 (2011), 279–335 | DOI | MR | Zbl

[4] “$G-$decompositions of matrices and related problems I”, R. Ganikhodzhaev, F. Mukhamedov, M. Saburov, 436 (2012), 1344–1366 | MR | Zbl

[5] R. Ganikhodzhaev, M. Saburov, Kh. Saburov, “Schur monotone decreasing sequences”, AIP Conference Proceedings, 1557 (2013), 108–111 | DOI

[6] H. Joe, “Majorization and divergence”, J. Math. Anal. App., 148 (1990), 287–305 | DOI | MR | Zbl

[7] A. Leizarowitz, “On infinite products of stochastic matrices”, Linear Algebra and its Applications, 168 (1992), 189–219 | DOI | MR | Zbl

[8] Yu. I. Lyubich, Mathematical Structures in Population Genetics, Springer-Verlag, Berlin, 1992 | MR | Zbl

[9] A. Marshall, I. Olkin, B. Arnold, Inequalities: Theory of majorization and its applications, Springer-Verlag, New York, 2011 | MR | Zbl

[10] F. Mukhamedov, M. Saburov, I. Qaralleh, “On $\xi^{(s)}-$quadratic stochastic operators on two dimensional simplex and their behavior”, Abs. App. Anal., 2013 (2013), 1–12 | MR

[11] “Some strange properties of quadratic stochastic Volterra operators”, M. Saburov, 21 (2013), 94–97

[12] M. Saburov, “Ergodicity of nonlinear Markov operators on the finite dimensional space”, Nonlinear Anal. Theory Methods, 143 (2016), 105–119 | DOI | MR | Zbl

[13] M. Saburov, Kh. Saburov, “Reaching a Consensus in Multi-Agent Systems: A Time Invariant Nonlinear Rule”, Journal of Education and Vocational Research, 4:5 (2013), 130–133

[14] M. Saburov, Kh. Saburov, “Mathematical models of nonlinear uniform consensus”, ScienceAsia, 40:4 (2014), 306–312 | DOI

[15] M. Saburov, Kh. Saburov, “Reaching a nonlinear consensus: Polynomial stochastic operators”, Inter. J. Con. Auto. Sys., 12:6 (2014), 1276–1282 | DOI | MR

[16] M. Saburov, Kh. Saburov, “Reaching a consensus: a discrete nonlinear time-varying case”, Inter. J. Sys. Sci., 47:10 (2016), 2449–2457 | DOI | MR | Zbl

[17] M. Saburov, N. A. Yusof, “On quadratic stochastic operators having three fixed points”, Journal of Physics: Conference Series, 697 (2016), 012012 | DOI | MR

[18] M. Saburov, N. A. Yusof, “Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains”, Linear Algebra Appl., 507 (2016), 153–157 | DOI | MR | Zbl

[19] M. Saburov, N. A. Yusof, “R-majorizing quadratic stochastic operators: Examples on 2D simplex”, Malaysian Journal of Mathematical Society, 10(S) (2016), 37–47 | MR

[20] E. Seneta, Nonnegative Matrices and Markov Chains, Springer-Verlag, New York, 1981 | MR