Scale parameter estimation of discrete scale invariant processes
Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 62-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimating the scale parameter of a continuous-time discrete scale invariant (DSI) process is one of the fundamental problems in the literature. We present an efficient estimation method which is based on transforming the DSI process into a vector-valued self-similar process and allows us to obtain the structure of the covariance matrix, which is the product of a scale and a block-Toeplitz matrices, and its block size depends on the unknown scale parameter. Therefore, we sweep the block size and obtain the maximum likelihood (ML) estimate of the scale parameter. We show that, the ML estimator does not directly solve the scale estimation problem. Hence, we penalize the likelihood following an information theoretic approach. The performance of the estimation method is studied via simulation. Finally this method is applied to the real data of S$\$P500 and Dow Jones indices for some special periods.
Keywords: Discrete scale invariance, Multi-dimensional self-similar process, Scale parameter estimation.
@article{THSP_2017_22_1_a5,
     author = {Y. Maleki},
     title = {Scale parameter estimation of discrete scale invariant processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {62--70},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a5/}
}
TY  - JOUR
AU  - Y. Maleki
TI  - Scale parameter estimation of discrete scale invariant processes
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 62
EP  - 70
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a5/
LA  - en
ID  - THSP_2017_22_1_a5
ER  - 
%0 Journal Article
%A Y. Maleki
%T Scale parameter estimation of discrete scale invariant processes
%J Teoriâ slučajnyh processov
%D 2017
%P 62-70
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a5/
%G en
%F THSP_2017_22_1_a5
Y. Maleki. Scale parameter estimation of discrete scale invariant processes. Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 62-70. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a5/

[1] M. Bartolozzi, S. Drozdz, D. B. Leieber, J. Speth, A. W. Thomas, “Self-similar log-periodic structures in Western stock markets from 2000”, Int. J. Mod. Phys. C., 16:9 (2005), 1347–1361 | DOI

[2] M. V. Berry, Z. V. Lewis, “On the Weierstrass-Mandelbrot fractal function”, Proc. R. Soc. Lond. A., 370 (1980), 459–484 | DOI | MR | Zbl

[3] P. Borgnat, P. O. Amblard, P. Flandrin, “Scale invariances and Lamperti transformations for stochastic processes”, J. Phys. A., 38 (2005), 2081–2101 | DOI | MR | Zbl

[4] P. Borgnat, P. Flandrin, P. O. Amblard, “Stochastic discrete scale invariance”, IEEE Signal Proc. Lett., 9:6 (2002), 182–184 | DOI

[5] P. Borgnat, P. Flandrin, “On the chirp decomposition of Weierstrass-Mandelbrot functions, and their time-frequency interpretation”, IEEE Signal Proc. Lett., 9:6 (2002), 182–184 | DOI

[6] K. Burnecki, M. Maejima, A. Weron, “The Lamperti transformation for self-similar processes”, Appl. Comput. Harmon. Anal., 15 (2003), 134–146 | DOI | MR

[7] P. Flandrin, P. Borgnat, P. O. Amblard, “From stationarity to self-similarity and back: variations on the lamperti transformation”, Lecture notes on physics, 26, Springer, 2003, 88–117 | DOI

[8] A. Johansen, D. Sornette, O. Ledoit, “Predicting financial crashes using discrete scale invariance”, Journal, 1:4 (1999), 5–32

[9] A. Johansen, D. Sornette, O. Ledoit, “Empirical and theoretical status of discrete scale invariance in financial crashes”, J. Risk, 1:4 (1999), 5–32 | DOI

[10] J. Kwapien, S. Drorzdz, “Physical approach to complex systems”, Phys. Rep., 515 (2012), 115–226 | DOI | MR

[11] N. Modarresi, S. Rezakhah, “Spectral Analysis of Multi-dimensional Self-similar Markov Processes”, J. Phys. A: Math. Theor., 43:12 (2010), 125004. | DOI | MR | Zbl

[12] N. Modarresi, S. Rezakhah, “A New Structure for Analyzing Discrete Scale Invariant Processes: Covariance and Spectra”, J. Stat. Phys., 153:1 (2013), 162–176 | DOI | MR | Zbl

[13] N. Modarresi, S. Rezakhah, Estimation of Scale and Hurst Parameters of Semi-Selfsimilar Processes, 10 Jul 2012, arXiv: 1207.2450v1 [math.ST]

[14] D. Ramirez, P. J. Schreier, J. Via, I. Santamaria, L. L. Scharf, “A Regularized Maximum Likelihood Estimator for the Period of a Cyclostationary Process”, Asilomar Conference on Signals, Systems, and Computers, USA, 2014

[15] D. Ramirez, J. Santamaria, I. Via, L. L. Scharf, “Detection of spatially correlated Gaussian time series”, IEEE Trans. Signal Process., 58:10 (2010), 5006–5015 | DOI | MR

[16] S. Rezakhah, Y. Maleki, “Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra”, J. Stat. Phys., 164:2 (2016), 439–448 | DOI | MR

[17] G. Schwarz, “Estimating the dimension of a model”, The Annals of Statistics., 6 (1978), 461–464 | DOI | MR | Zbl

[18] D. Sornette, “Discrete scale invariance and complex dimensions”, Phys. Rep., 297:5 (1998), 239–270 | DOI | MR