Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2017_22_1_a5, author = {Y. Maleki}, title = {Scale parameter estimation of discrete scale invariant processes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {62--70}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a5/} }
Y. Maleki. Scale parameter estimation of discrete scale invariant processes. Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 62-70. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a5/
[1] M. Bartolozzi, S. Drozdz, D. B. Leieber, J. Speth, A. W. Thomas, “Self-similar log-periodic structures in Western stock markets from 2000”, Int. J. Mod. Phys. C., 16:9 (2005), 1347–1361 | DOI
[2] M. V. Berry, Z. V. Lewis, “On the Weierstrass-Mandelbrot fractal function”, Proc. R. Soc. Lond. A., 370 (1980), 459–484 | DOI | MR | Zbl
[3] P. Borgnat, P. O. Amblard, P. Flandrin, “Scale invariances and Lamperti transformations for stochastic processes”, J. Phys. A., 38 (2005), 2081–2101 | DOI | MR | Zbl
[4] P. Borgnat, P. Flandrin, P. O. Amblard, “Stochastic discrete scale invariance”, IEEE Signal Proc. Lett., 9:6 (2002), 182–184 | DOI
[5] P. Borgnat, P. Flandrin, “On the chirp decomposition of Weierstrass-Mandelbrot functions, and their time-frequency interpretation”, IEEE Signal Proc. Lett., 9:6 (2002), 182–184 | DOI
[6] K. Burnecki, M. Maejima, A. Weron, “The Lamperti transformation for self-similar processes”, Appl. Comput. Harmon. Anal., 15 (2003), 134–146 | DOI | MR
[7] P. Flandrin, P. Borgnat, P. O. Amblard, “From stationarity to self-similarity and back: variations on the lamperti transformation”, Lecture notes on physics, 26, Springer, 2003, 88–117 | DOI
[8] A. Johansen, D. Sornette, O. Ledoit, “Predicting financial crashes using discrete scale invariance”, Journal, 1:4 (1999), 5–32
[9] A. Johansen, D. Sornette, O. Ledoit, “Empirical and theoretical status of discrete scale invariance in financial crashes”, J. Risk, 1:4 (1999), 5–32 | DOI
[10] J. Kwapien, S. Drorzdz, “Physical approach to complex systems”, Phys. Rep., 515 (2012), 115–226 | DOI | MR
[11] N. Modarresi, S. Rezakhah, “Spectral Analysis of Multi-dimensional Self-similar Markov Processes”, J. Phys. A: Math. Theor., 43:12 (2010), 125004. | DOI | MR | Zbl
[12] N. Modarresi, S. Rezakhah, “A New Structure for Analyzing Discrete Scale Invariant Processes: Covariance and Spectra”, J. Stat. Phys., 153:1 (2013), 162–176 | DOI | MR | Zbl
[13] N. Modarresi, S. Rezakhah, Estimation of Scale and Hurst Parameters of Semi-Selfsimilar Processes, 10 Jul 2012, arXiv: 1207.2450v1 [math.ST]
[14] D. Ramirez, P. J. Schreier, J. Via, I. Santamaria, L. L. Scharf, “A Regularized Maximum Likelihood Estimator for the Period of a Cyclostationary Process”, Asilomar Conference on Signals, Systems, and Computers, USA, 2014
[15] D. Ramirez, J. Santamaria, I. Via, L. L. Scharf, “Detection of spatially correlated Gaussian time series”, IEEE Trans. Signal Process., 58:10 (2010), 5006–5015 | DOI | MR
[16] S. Rezakhah, Y. Maleki, “Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra”, J. Stat. Phys., 164:2 (2016), 439–448 | DOI | MR
[17] G. Schwarz, “Estimating the dimension of a model”, The Annals of Statistics., 6 (1978), 461–464 | DOI | MR | Zbl
[18] D. Sornette, “Discrete scale invariance and complex dimensions”, Phys. Rep., 297:5 (1998), 239–270 | DOI | MR