Some random integral operators related to a point processes
Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 16-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study some properties of a random integral operator in $L_2( \mathbb{R})$ whose kernel is defined as a convolution of a Gaussian density and a stationary point process.
Keywords: Random operator, point process, Arratia flow.
@article{THSP_2017_22_1_a1,
     author = {A. A. Dorogovtsev and Ia. A. Korenovska},
     title = {Some random integral operators related to a point processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {16--21},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a1/}
}
TY  - JOUR
AU  - A. A. Dorogovtsev
AU  - Ia. A. Korenovska
TI  - Some random integral operators related to a point processes
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 16
EP  - 21
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a1/
LA  - en
ID  - THSP_2017_22_1_a1
ER  - 
%0 Journal Article
%A A. A. Dorogovtsev
%A Ia. A. Korenovska
%T Some random integral operators related to a point processes
%J Teoriâ slučajnyh processov
%D 2017
%P 16-21
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a1/
%G en
%F THSP_2017_22_1_a1
A. A. Dorogovtsev; Ia. A. Korenovska. Some random integral operators related to a point processes. Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 16-21. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a1/

[1] G. Last, M. Penrose, Lectures on the Poisson Processes, Cambridge University Press, 2016 (to appear)

[2] A. A. Dorogovtsev, “Krylov-Veretennikov expansion for coalescing stochastic flows”, Commun. Stoch. Anal., 6:3 (2012), 421–435 | MR | Zbl

[3] Ya. A. Korenovskaya, “Properties of Strong Random Operators Generated by the Arratia Flow”, Ukrainian Mathematical Journal, 69:2 (2017), 186–204 | DOI | MR

[4] R. Arratia, Coalescing Brownian motions on the line, PhD Thesis, University of Wisconsin, Madison, 1979 | MR

[5] A. V. Skorokhod, Random linear operators, D.Reidel Publishing Company, Dordrecht, Holland, 1983 | MR

[6] A. A. Dorogovtsev, “Semigroups of finite-dimensional random projections”, Lithuanian Mathematical Journal, 51:3 (2011), 330–341 | DOI | MR | Zbl

[7] I. A. Korenovska, “Random maps and Kolmogorov widths”, Theory of Stochastic Processes, 20(36):1 (2015), 78–83 | MR | Zbl