Transfer theorems and right-continuous processes
Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 91-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

A counterexample to a transfer result in [5] (Theorem 2.4, Chap. 4) is given. A new result, which provides a reasonable substitute for the disproved one, is proved as well. This result yields, in particular, a transfer theorem for processes whose paths are right-continuous but not necessarily cadlag.
Keywords: Coupling, perfect probability measure, regular conditional distribution, transfer theorem.
@article{THSP_2016_21_2_a7,
     author = {Pietro Rigo and Hermann Thorisson},
     title = {Transfer theorems and right-continuous processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {91--95},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a7/}
}
TY  - JOUR
AU  - Pietro Rigo
AU  - Hermann Thorisson
TI  - Transfer theorems and right-continuous processes
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 91
EP  - 95
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a7/
LA  - en
ID  - THSP_2016_21_2_a7
ER  - 
%0 Journal Article
%A Pietro Rigo
%A Hermann Thorisson
%T Transfer theorems and right-continuous processes
%J Teoriâ slučajnyh processov
%D 2016
%P 91-95
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a7/
%G en
%F THSP_2016_21_2_a7
Pietro Rigo; Hermann Thorisson. Transfer theorems and right-continuous processes. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 91-95. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a7/

[1] P. Berti, L. Pratelli, P. Rigo, “Gluing lemmas and Skorohod representations”, Electr. Comm. Probab., 20 (2015), 1–11

[2] P. Berti, L. Pratelli, P. Rigo, “A survey on Skorokhod representation theorem without separability”, Theory Stoch. Proc., 20(36):2 (2015), 1–12

[3] O. Kallenberg, Foundations of modern probability, Second Edition, Springer, New York, 2002

[4] D. Ramachandran, Perfect measures I and II, ISI-Lect. Notes Series 5 and 7, Macmillan, New Delhi, 1979

[5] H. Thorisson, Coupling, stationarity, and regeneration, Springer, New York, 2000