Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2016_21_2_a0, author = {S. J. Dilworth and Duncan Wright}, title = {A {Direct} {Proof} of the {Reflection} {Principle} for {Brownian} {Motion}}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {1--3}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a0/} }
S. J. Dilworth; Duncan Wright. A Direct Proof of the Reflection Principle for Brownian Motion. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 1-3. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a0/
[1] Louis Bachelier, “Théorie mathématique du jeu”, Annales Scientifiques de l'École Normale Supérieure, 18 (1901), 143–209
[2] Paul Lévy, “Sur certains processus stochastiques homogènes”, Comp. Math., 7 (1940), 283–339
[3] Paul Malliavin, Integration and Probability, Springer-Verlag, New York, 1995
[4] René L. Schilling, Lothar Partzsch, Brownian Motion An Introduction to Stochastic Processes, De Gruyter, 2012
[5] Michael Steele, Stochastic Calculus and Financial Applications, Springer-Verlag, New York, 2001