Interval estimation of the fractional Brownian motion parameter in a model with measurement error
Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 84-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we show how to use Baxter statistics for the construction of the non–asymptotic confidence intervals for the Hurst index associated with a fractional Brownian motion within one errors–in–variables model.
Keywords: Fractional Brownian motion, Hurst parameter, Baxter sums, covariance function, confidence intervals.
@article{THSP_2016_21_1_a8,
     author = {O. O. Synyavska},
     title = {Interval estimation of the fractional {Brownian} motion parameter in a model with measurement error},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {84--90},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a8/}
}
TY  - JOUR
AU  - O. O. Synyavska
TI  - Interval estimation of the fractional Brownian motion parameter in a model with measurement error
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 84
EP  - 90
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a8/
LA  - en
ID  - THSP_2016_21_1_a8
ER  - 
%0 Journal Article
%A O. O. Synyavska
%T Interval estimation of the fractional Brownian motion parameter in a model with measurement error
%J Teoriâ slučajnyh processov
%D 2016
%P 84-90
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a8/
%G en
%F THSP_2016_21_1_a8
O. O. Synyavska. Interval estimation of the fractional Brownian motion parameter in a model with measurement error. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 84-90. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a8/

[1] T. Higuchi, “Approach to an irregular time series on the basis of fractal theory”, Physica D., 31 (1940), 277–283 | DOI | MR

[2] J.-M. Poggi, M.-C. Viano, “An estimate of the fractal index using multi-scale aggregates”, J. Time Series Anal., 19 (1998), 221–233 | DOI | MR | Zbl

[3] J.-F. Coeurjolly, “Estimating the parameters of a fractional Brownian motion by discrete variations of this sample paths”, Stat. Inference for Stoch. Process., 4 (2001), 199–207 | DOI | MR

[4] B. L. S. Prakasa Rao, Statistical Inference for Fractional Diffusion Processes, John Wiley Sons, Chichester, 2010 | MR | Zbl

[5] P. Levy, “Le mouvement Brownian plan”, Amer J. Math., 62 (1940), 487–550 | DOI | MR

[6] G. Baxter, “A strong limit theorem for Gaussian processes”, Proc. Amer. Math. Soc., 7:3 (1956), 522–527 | DOI | MR | Zbl

[7] J. M. Bardet, “Un test d'auto–similarite hour les processus gaussiences a accroissements stationares”, C. R. Acad. Sci. Paric., 328 (1999), 521–526 | DOI | MR | Zbl

[8] O. O. Kurchenko, “A strongly consistent estimate for the Hurst parameter of fractional Brownian motion”, Teor. Imovir. Mat. Stat., 67 (2002), 45–54 | MR

[9] J–C. Breton, I. Nourdin, G. Peccati, “Exact confidence intervals for the Hurst parameter of a fractional Brownian motion”, Electronic J. Statist., 3 (2009), 416–425 | DOI | MR | Zbl

[10] H. Schneeweiss, H. J. Mittag, Lineare Modelle mit fehlerbehafteten Daten, Physica-Verlag, Heidelberg, 1986 | MR

[11] R. J. Carroll, D. Ruppert, L. A. Stefanski, Measurement Error in Nonlinear Models, Chapman and Hall, London, 1995 | MR | Zbl

[12] C.–L. Cheng, J. W. Van Ness, Statistical Regression with Measurement Error, Arnold, London, 1999 | MR | Zbl

[13] A. Kukush, S. Shklyar, S. Masiuk, M. Chepurny, I. Likhtarov, Regression model with measurement errors and their application for estimation of radiation risk, Kyiv, 2015 (in Ukrainian)

[14] I. A. Ibragimov, Y. A. Rozanov, Gaussian random processes, Nauka, Moscow, 1970 (in Russian)

[15] G. M. Fikhtengolts, A Course of Differential and Integral Calculus, v. 1, Nauka, Moscow, 1969 (in Russian)