Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2016_21_1_a2, author = {A. V. Ivanov and I. V. Orlovsky}, title = {Asymptotic normality of linear regression parameter estimator in the case of random regressors}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {17--30}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a2/} }
TY - JOUR AU - A. V. Ivanov AU - I. V. Orlovsky TI - Asymptotic normality of linear regression parameter estimator in the case of random regressors JO - Teoriâ slučajnyh processov PY - 2016 SP - 17 EP - 30 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a2/ LA - en ID - THSP_2016_21_1_a2 ER -
%0 Journal Article %A A. V. Ivanov %A I. V. Orlovsky %T Asymptotic normality of linear regression parameter estimator in the case of random regressors %J Teoriâ slučajnyh processov %D 2016 %P 17-30 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a2/ %G en %F THSP_2016_21_1_a2
A. V. Ivanov; I. V. Orlovsky. Asymptotic normality of linear regression parameter estimator in the case of random regressors. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 17-30. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a2/
[1] A. Ya. Dorogovtsev, Theory of estimator of random processes parameters, Vyscha Shkola, Kiyv, 1982 (in Russian) | MR
[2] L. P. Golubovska, A. V. Ivanov, I. V. Orlovsky, “Asymptotic properties of estimator of linear regression parameter in the case of long-range dependent regressors”, Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 84:4 (2012), 26 – 33 (in Ukrainian)
[3] A. V. Ivanov, I. V. Orlovsky, “Asymptotic properties of estimator of linear regression parameter in the case of weak dependent regressors”, Reports of the National Academy of Sciences of Ukraine, 2014, no. 5, 24 – 28 (in Ukrainian) | MR | Zbl
[4] A. V. Ivanov, I. V. Orlovsky, “Asymptotic properties of linear regression parameter estimator in the case of long-range dependent regressors and noise”, Theory of Stochastic Processes, 19(35):1 (2014), 1 – 10 | MR | Zbl
[5] I. V. Orlovsky, “Consistency of least squares estimator of linear regression parameter in the case of discrete time and long-range or weak dependent regressors”, Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 96:4 (2014), 81 – 87 (in Ukrainian)
[6] E. Seneta, Regularly varying function, Nauka\, Moskow, 1985 (in Russian) | MR
[7] I. I. Gikhman, A. V. Skorohod, Introduction to the theory of random processes, Nauka, Moskow, 1965 (in Russian) | MR
[8] E. H. Lieb, Inequalities: selecta of Elliott H. Lieb, Springer, 2000 | MR
[9] F. Avram, N. Leonenko, L. Sakhno, “On a Szegö type limit theorem, the Hölder-Young-Brascamp-Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields”, ESAIM: PS, 14 (2010), 210 – 255 | DOI | MR | Zbl
[10] I. A. Ibragimov, U. A. Rozanov, Gaussian random processes, Nauka, Moskow, 1970 (in Russian)
[11] U. Grenander, M. Rosenblatt, Statistical Analysis of Stationary Time Series, Almqvist and Wiksell, Stockholm, 1956 | MR
[12] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968 | MR | Zbl
[13] A. V. Ivanov, N. N. Leonenko, M. D. Ruiz-Medina, I. N. Savych, “Limit theorems for weighted non-linear transformations of Gaussian processes with singular spectra”, Ann. Probab, 41:2 (2013), 1088 – 1114 | DOI | MR | Zbl