Asymptotic normality of linear regression parameter estimator in the case of random regressors
Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 17-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions of asymptotic normality of the least squares estimator of linear regression model parameter in the case of discrete time and weak or long-range dependent random regressors and noise are obtained in the paper.
Keywords: Asymptotic normality, least squares estimator, linear regression, random regressors, weak dependence, long-range dependence.
@article{THSP_2016_21_1_a2,
     author = {A. V. Ivanov and I. V. Orlovsky},
     title = {Asymptotic normality of linear regression parameter estimator in the case of random regressors},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {17--30},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a2/}
}
TY  - JOUR
AU  - A. V. Ivanov
AU  - I. V. Orlovsky
TI  - Asymptotic normality of linear regression parameter estimator in the case of random regressors
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 17
EP  - 30
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a2/
LA  - en
ID  - THSP_2016_21_1_a2
ER  - 
%0 Journal Article
%A A. V. Ivanov
%A I. V. Orlovsky
%T Asymptotic normality of linear regression parameter estimator in the case of random regressors
%J Teoriâ slučajnyh processov
%D 2016
%P 17-30
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a2/
%G en
%F THSP_2016_21_1_a2
A. V. Ivanov; I. V. Orlovsky. Asymptotic normality of linear regression parameter estimator in the case of random regressors. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 17-30. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a2/

[1] A. Ya. Dorogovtsev, Theory of estimator of random processes parameters, Vyscha Shkola, Kiyv, 1982 (in Russian) | MR

[2] L. P. Golubovska, A. V. Ivanov, I. V. Orlovsky, “Asymptotic properties of estimator of linear regression parameter in the case of long-range dependent regressors”, Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 84:4 (2012), 26 – 33 (in Ukrainian)

[3] A. V. Ivanov, I. V. Orlovsky, “Asymptotic properties of estimator of linear regression parameter in the case of weak dependent regressors”, Reports of the National Academy of Sciences of Ukraine, 2014, no. 5, 24 – 28 (in Ukrainian) | MR | Zbl

[4] A. V. Ivanov, I. V. Orlovsky, “Asymptotic properties of linear regression parameter estimator in the case of long-range dependent regressors and noise”, Theory of Stochastic Processes, 19(35):1 (2014), 1 – 10 | MR | Zbl

[5] I. V. Orlovsky, “Consistency of least squares estimator of linear regression parameter in the case of discrete time and long-range or weak dependent regressors”, Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 96:4 (2014), 81 – 87 (in Ukrainian)

[6] E. Seneta, Regularly varying function, Nauka\, Moskow, 1985 (in Russian) | MR

[7] I. I. Gikhman, A. V. Skorohod, Introduction to the theory of random processes, Nauka, Moskow, 1965 (in Russian) | MR

[8] E. H. Lieb, Inequalities: selecta of Elliott H. Lieb, Springer, 2000 | MR

[9] F. Avram, N. Leonenko, L. Sakhno, “On a Szegö type limit theorem, the Hölder-Young-Brascamp-Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields”, ESAIM: PS, 14 (2010), 210 – 255 | DOI | MR | Zbl

[10] I. A. Ibragimov, U. A. Rozanov, Gaussian random processes, Nauka, Moskow, 1970 (in Russian)

[11] U. Grenander, M. Rosenblatt, Statistical Analysis of Stationary Time Series, Almqvist and Wiksell, Stockholm, 1956 | MR

[12] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968 | MR | Zbl

[13] A. V. Ivanov, N. N. Leonenko, M. D. Ruiz-Medina, I. N. Savych, “Limit theorems for weighted non-linear transformations of Gaussian processes with singular spectra”, Ann. Probab, 41:2 (2013), 1088 – 1114 | DOI | MR | Zbl