Tail behavior of suprema of perturbed random walks
Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 12-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a lattice version of Goldie's result on tail behavior of suprema of perturbed random walks.
Keywords: Perturbed random walk; supremum; tail behavior.
@article{THSP_2016_21_1_a1,
     author = {Alexander Iksanov and Serguei Polotskiy},
     title = {Tail behavior of suprema of perturbed random walks},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {12--16},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a1/}
}
TY  - JOUR
AU  - Alexander Iksanov
AU  - Serguei Polotskiy
TI  - Tail behavior of suprema of perturbed random walks
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 12
EP  - 16
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a1/
LA  - en
ID  - THSP_2016_21_1_a1
ER  - 
%0 Journal Article
%A Alexander Iksanov
%A Serguei Polotskiy
%T Tail behavior of suprema of perturbed random walks
%J Teoriâ slučajnyh processov
%D 2016
%P 12-16
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a1/
%G en
%F THSP_2016_21_1_a1
Alexander Iksanov; Serguei Polotskiy. Tail behavior of suprema of perturbed random walks. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 12-16. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a1/

[1] G. Alsmeyer, A. Iksanov, A. Marynych, “Functional limit theorems for the number of occupied boxes in the Bernoulli sieve”, Stoch. Proc. Appl., 2017 (to appear) , arXiv: 1601.04274

[2] G. Alsmeyer, A. Iksanov, M. Meiners, “Power and exponential moments of the number of visits and related quantities for perturbed random walks”, J. Theoret. Probab., 28 (2015), 1–40 | DOI | MR | Zbl

[3] G. Alsmeyer, A. Iksanov, U. Rösler, “On distributional properties of perpetuities”, J. Theoret. Probab., 22 (2009), 666–682 | DOI | MR | Zbl

[4] V. F. Araman, P. W. Glynn, “Tail asymptotics for the maximum of perturbed random walk”, Ann. Appl. Probab., 16 (2006), 1411–1431 | DOI | MR | Zbl

[5] C. M. Goldie, “Implicit renewal theory and tails of solutions of random equations”, Ann. Appl. Probab., 1 (1991), 126–166 | DOI | MR | Zbl

[6] A. Gut, Stopped random walks. Limit theorems and applications, 2nd Edition, Springer, 2009 | MR | Zbl

[7] X. Hao, Q. Tang, L. Wei, “On the maximum exceedance of a sequence of random variables over a renewal threshold”, J. Appl. Probab., 46 (2009), 559–570 | DOI | MR

[8] A. Iksanov, “On the supremum of perturbed random walk”, Bulletin of Kiev University, 1 (2007), 161–164 (in Ukrainian)

[9] A. Iksanov, A. Pilipenko, “On the maximum of a perturbed random walk”, Stat. Probab. Letters, 92 (2014), 168–172 | DOI | MR | Zbl

[10] M. M. Meerschaert, S. A. Stoev, “Extremal limit theorems for observations separated by random power law waiting times”, J. Stat. Planning and Inference, 139 (2009), 2175–2188 | DOI | MR | Zbl

[11] Z. Palmowski, B. Zwart, “Tail asymptotics of the supremum of a regenerative process”, J. Appl. Probab., 44 (2007), 349–365 | DOI | MR | Zbl

[12] Z. Palmowski, B. Zwart, “On perturbed random walks”, J. Appl. Probab., 47 (2010), 1203–1204 | DOI | MR | Zbl

[13] E. I. Pancheva, P. K. Jordanova, “Functional transfer theorems for maxima of iid random variables”, Comptes Rendus de l'Académie Bulgare des Sciences, 57 (2004), 9–14 | MR | Zbl

[14] E. Pancheva, I. K. Mitov, K. V. Mitov, “Limit theorems for extremal processes generated by a point process with correlated time and space components”, Stat. Probab. Letters, 79 (2009), 390–395 | DOI | MR | Zbl

[15] C. Y. Robert, “Asymptotic probabilities of an exceedance over renewal thresholds with an application to risk theory”, J. Appl. Probab., 42 (2005), 153–162 | DOI | MR | Zbl