On self-intersection local times for generalized Brownian bridges and the distance between step functions
Teoriâ slučajnyh processov, Tome 20 (2015) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper $k$-multiple self-intersection local time for planar Gaussian integrators generated by linear operator with nontrivial kernel is studied. In this case additional singularities arise in its formal Fourier-Wiener transform. In case $k=2$ the set of singularities is the finite number of points. In case $k>2$ it contains intervals and hyperplanes. In the first and the second cases using two different approaches related on structure of set of singularities we show that "new" singularities do not imply on the convergence of integral corresponding to the formal Fourier-Wiener transform and regularization consist of compensation of impact of diagonals as for the Wiener process.
Keywords: Gaussian integrators, white noise, self-intersection local time
Mots-clés : Fourier-Wiener transform.
@article{THSP_2015_20_1_a0,
     author = {A. A. Dorogovtsev and O. L. Izyumtseva},
     title = {On self-intersection local times for generalized {Brownian} bridges and the distance between step functions},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a0/}
}
TY  - JOUR
AU  - A. A. Dorogovtsev
AU  - O. L. Izyumtseva
TI  - On self-intersection local times for generalized Brownian bridges and the distance between step functions
JO  - Teoriâ slučajnyh processov
PY  - 2015
SP  - 1
EP  - 13
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a0/
LA  - en
ID  - THSP_2015_20_1_a0
ER  - 
%0 Journal Article
%A A. A. Dorogovtsev
%A O. L. Izyumtseva
%T On self-intersection local times for generalized Brownian bridges and the distance between step functions
%J Teoriâ slučajnyh processov
%D 2015
%P 1-13
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a0/
%G en
%F THSP_2015_20_1_a0
A. A. Dorogovtsev; O. L. Izyumtseva. On self-intersection local times for generalized Brownian bridges and the distance between step functions. Teoriâ slučajnyh processov, Tome 20 (2015) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a0/

[1] A. V. Skorokhod, “On some generalization of stochastic integral”, Theory of Probability and its Applications, XX:2 (1975), 219–233 | MR | Zbl

[2] A. A. Dorogovtsev, Stochastic Analysis and Random Maps in Hilbert space, VSP, Utrecht, 1994 | MR | Zbl

[3] A. A. Dorogovtsev, “Stochastic integration and one class of Gaussian random processes”, Ukr. Math. Journal, 50:4 (1998), 495–505 | DOI | MR

[4] A. A. Dorogovtsev, “Smoothing problem in anticipating scenario”, Ukr. Math. Journal, 57:9 (2005), 1424–1441 | DOI | MR | Zbl

[5] O. L. Izyumtseva, “On the local times for Gaussian integrators”, Theory of Stochastic Processes, 19(35):1 (2014), 11–25 | MR

[6] S. Varadhan, “Appendix to: Euclidean quantum field theory, by K. Symanzik”, Local quantum theory, ed. R. Jost, Academic press, New York, 1969

[7] J. Rosen, “A renormalized local time for multiple intersection of planar Brownian motion”, Sem. de Prob., XX(20), 1986, 515–531 | MR

[8] E. B. Dynkin, “Regularized self-intersection local time for planar Brownian motion”, Ann. Probab., 16:1 (1988), 58–74 | DOI | MR | Zbl

[9] J.-F. Le Gall, “Wiener Sausage and self-intersection local time”, J. Funct. Anal., 88 (1990), 299–341 | DOI | MR | Zbl

[10] A. A. Dorogovtsev, O. L. Izyumtseva, “On regularization of the formal Fourier–Wiener transform of the self-intersection local time of a planar Gaussian process”, Theory of Stochastic processes, 17(33):1 (2011), 28–38 | MR | Zbl

[11] A. A. Dorogovtsev, O. L. Izyumtseva, Self-intersection local times for Gaussian processes, Lap Lambert Academic Publishing, Germany, 2011, 152 pp.

[12] A. A. Dorogovtsev, O. L. Izyumtseva, “Asymptotic and geometric properties of compactly perturbed Wiener process and self-intersection local time”, Communications on Stochastic Analysis, 7:2 (2013), 337–348 | MR

[13] A. A. Dorogovtsev, O. L. Izyumtseva, “Self-intersection local time for Gaussian processes in the plane”, Doklady Mathematics, 89:1 (2014), 1–3 | DOI | MR | Zbl

[14] A. A. Dorogovtsev, “The Fourier–Wiener transform of functionals from an Arratia flow”, Ukr. Math. Bull., 4:3 (2007), 329–350 | MR