Semigroups of $m$-point motions of the Arratia flow, and binary forests
Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 31-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a core for the generator of the semigroup of an $m$-point motion of the Arratia flow. We represent an action of the semigroup on functions from this core in terms of binary forests.
Keywords: Coalescence flows, semigroup of a $m$-point motions, boundary value problem, binary forests.
@article{THSP_2014_19_2_a2,
     author = {E. V. Glinyanaya},
     title = {Semigroups of $m$-point motions of the {Arratia} flow, and binary forests},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {31--41},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a2/}
}
TY  - JOUR
AU  - E. V. Glinyanaya
TI  - Semigroups of $m$-point motions of the Arratia flow, and binary forests
JO  - Teoriâ slučajnyh processov
PY  - 2014
SP  - 31
EP  - 41
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a2/
LA  - en
ID  - THSP_2014_19_2_a2
ER  - 
%0 Journal Article
%A E. V. Glinyanaya
%T Semigroups of $m$-point motions of the Arratia flow, and binary forests
%J Teoriâ slučajnyh processov
%D 2014
%P 31-41
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a2/
%G en
%F THSP_2014_19_2_a2
E. V. Glinyanaya. Semigroups of $m$-point motions of the Arratia flow, and binary forests. Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 31-41. http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a2/

[1] I. I. Nishchenko, “Discrete time approximation of coalescing stochastic flows on the real line”, Theory of Stochastic Processes, 17(33):1 (2011), 70–78 | MR | Zbl

[2] T. E. Harris, “Coalescing and noncoalescing stochastic flows in $\mathbb{R}_1$”, Stoch. Process and Their Applic., 17:2 (1984), 187–210 | DOI | MR | Zbl

[3] E. V. Glinyanaya, “Disordering asymptotics in the discrete approximation of an Arratia flow”, Theory of Stochastic Processes, 18(34):2 (2012), 39–49 | MR

[4] A. A. Dorogovtsev, I. I. Nischenko, “An analysis of stochastic flows”, Communications on Stochastic Analysis, 8:3 (2014), 331–342 | MR

[5] A. Shamov, “Short-time asymptotics of one-dimensional Harris flows”, Communications on Stochastic Analysis, 5:3 (2011), 527–539 | MR

[6] Y. Le Jan, O. Raimond, “Flows, coalescence and noise”, Ann. Probab., 32 (2004), 1247–1315 | DOI | MR | Zbl

[7] O. Kallenberg, Foundation of Modern Probability, second ed., Springer, New York, 2001 | MR

[8] S. Karlin, J. G. McGregor, “Coincidence probabilities”, Pacific J.Math., 9 (1959), 1141–1164 | DOI | MR | Zbl

[9] A. D. Polyanin, Handbook of linear partial differential equations for engineers and scientists, CRC press, 2001 | MR