Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2014_19_2_a2, author = {E. V. Glinyanaya}, title = {Semigroups of $m$-point motions of the {Arratia} flow, and binary forests}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {31--41}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a2/} }
E. V. Glinyanaya. Semigroups of $m$-point motions of the Arratia flow, and binary forests. Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 31-41. http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a2/
[1] I. I. Nishchenko, “Discrete time approximation of coalescing stochastic flows on the real line”, Theory of Stochastic Processes, 17(33):1 (2011), 70–78 | MR | Zbl
[2] T. E. Harris, “Coalescing and noncoalescing stochastic flows in $\mathbb{R}_1$”, Stoch. Process and Their Applic., 17:2 (1984), 187–210 | DOI | MR | Zbl
[3] E. V. Glinyanaya, “Disordering asymptotics in the discrete approximation of an Arratia flow”, Theory of Stochastic Processes, 18(34):2 (2012), 39–49 | MR
[4] A. A. Dorogovtsev, I. I. Nischenko, “An analysis of stochastic flows”, Communications on Stochastic Analysis, 8:3 (2014), 331–342 | MR
[5] A. Shamov, “Short-time asymptotics of one-dimensional Harris flows”, Communications on Stochastic Analysis, 5:3 (2011), 527–539 | MR
[6] Y. Le Jan, O. Raimond, “Flows, coalescence and noise”, Ann. Probab., 32 (2004), 1247–1315 | DOI | MR | Zbl
[7] O. Kallenberg, Foundation of Modern Probability, second ed., Springer, New York, 2001 | MR
[8] S. Karlin, J. G. McGregor, “Coincidence probabilities”, Pacific J.Math., 9 (1959), 1141–1164 | DOI | MR | Zbl
[9] A. D. Polyanin, Handbook of linear partial differential equations for engineers and scientists, CRC press, 2001 | MR