Sojourn measures of random walks on deterministic sequences
Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 91-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for some class of random walks $\{Z(n),\,n\geq 0\}$, the random sequence $x_{Z(n)}$ almost surely inherits the property of a deterministic sequence $x_n$ to be uniformly distributed.
Keywords: Uniform distribution, random walk.
@article{THSP_2014_19_1_a7,
     author = {V. I. Senin},
     title = {Sojourn measures of random walks on deterministic sequences},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {91--99},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a7/}
}
TY  - JOUR
AU  - V. I. Senin
TI  - Sojourn measures of random walks on deterministic sequences
JO  - Teoriâ slučajnyh processov
PY  - 2014
SP  - 91
EP  - 99
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a7/
LA  - en
ID  - THSP_2014_19_1_a7
ER  - 
%0 Journal Article
%A V. I. Senin
%T Sojourn measures of random walks on deterministic sequences
%J Teoriâ slučajnyh processov
%D 2014
%P 91-99
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a7/
%G en
%F THSP_2014_19_1_a7
V. I. Senin. Sojourn measures of random walks on deterministic sequences. Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 91-99. http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a7/

[1] V. Kaloshin, Y. Sinai, “Non-symmetric Simple Random Walks along Orbits of Ergodic Automorphisms”, Amer. Math. Soc. Transl., 198:2 (2000), 109–115 | MR | Zbl

[2] V. Kaloshin, Y. Sinai, “Non-symmetric Simple Random Walks along Orbits of Anosov Diffeomorphisms”, Proc. of Steklov Math. Inst., 228 (2000), 224–233 | MR | Zbl

[3] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience, New-York, 1974 | MR | Zbl

[4] S. Foss, S. Zachary, Stochastic sequences with a regenerative structure that may depend both on the future and on the past (to appear) , arXiv: 1212.1475 | MR

[5] P. Billingslley, Convergence of probability measures, John Wiley, New-York, 1999 | MR

[6] K. Sato, T. Watanabe, “Moments of last exit times for Lévy processes”, Ann. Inst. H. Poincaré Probab. Statist., 40:2 (2004), 207–225 | MR | Zbl

[7] A. Shiryaev, Probability, Springer-Verlag, New-York, 1996 | MR