Limit behavior of a simple random walk with non-integrable jump from a barrier
Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 52-61

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a Markov chain on $\mathbb{Z}_+$ with reflecting barrier at 0 such that jumps of the chain outside of 0 are i.i.d. with mean zero and finite variance. It is assumed that the jump from 0 has a distribution that belongs to the domain of attraction of non-negative stable law. It is proved that under natural scaling of a space and a time a limit of this scaled Markov chain is a Brownian motion with some Wentzell's boundary condition at 0.
Keywords: Random walk; Wentzell's boundary condition; invariance principle.
@article{THSP_2014_19_1_a5,
     author = {A. Yu. Pilipenko and Yu. E. Prykhodko},
     title = {Limit behavior of a simple random walk with non-integrable jump from a barrier},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {52--61},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a5/}
}
TY  - JOUR
AU  - A. Yu. Pilipenko
AU  - Yu. E. Prykhodko
TI  - Limit behavior of a simple random walk with non-integrable jump from a barrier
JO  - Teoriâ slučajnyh processov
PY  - 2014
SP  - 52
EP  - 61
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a5/
LA  - en
ID  - THSP_2014_19_1_a5
ER  - 
%0 Journal Article
%A A. Yu. Pilipenko
%A Yu. E. Prykhodko
%T Limit behavior of a simple random walk with non-integrable jump from a barrier
%J Teoriâ slučajnyh processov
%D 2014
%P 52-61
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a5/
%G en
%F THSP_2014_19_1_a5
A. Yu. Pilipenko; Yu. E. Prykhodko. Limit behavior of a simple random walk with non-integrable jump from a barrier. Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 52-61. http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a5/