Limit behavior of a simple random walk with non-integrable jump from a barrier
Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 52-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a Markov chain on $\mathbb{Z}_+$ with reflecting barrier at 0 such that jumps of the chain outside of 0 are i.i.d. with mean zero and finite variance. It is assumed that the jump from 0 has a distribution that belongs to the domain of attraction of non-negative stable law. It is proved that under natural scaling of a space and a time a limit of this scaled Markov chain is a Brownian motion with some Wentzell's boundary condition at 0.
Keywords: Random walk; Wentzell's boundary condition; invariance principle.
@article{THSP_2014_19_1_a5,
     author = {A. Yu. Pilipenko and Yu. E. Prykhodko},
     title = {Limit behavior of a simple random walk with non-integrable jump from a barrier},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {52--61},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a5/}
}
TY  - JOUR
AU  - A. Yu. Pilipenko
AU  - Yu. E. Prykhodko
TI  - Limit behavior of a simple random walk with non-integrable jump from a barrier
JO  - Teoriâ slučajnyh processov
PY  - 2014
SP  - 52
EP  - 61
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a5/
LA  - en
ID  - THSP_2014_19_1_a5
ER  - 
%0 Journal Article
%A A. Yu. Pilipenko
%A Yu. E. Prykhodko
%T Limit behavior of a simple random walk with non-integrable jump from a barrier
%J Teoriâ slučajnyh processov
%D 2014
%P 52-61
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a5/
%G en
%F THSP_2014_19_1_a5
A. Yu. Pilipenko; Yu. E. Prykhodko. Limit behavior of a simple random walk with non-integrable jump from a barrier. Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 52-61. http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a5/

[1] J. M. Harrison, L. A. Shepp, “On skew Brownian motion”, Ann. Probab., 9:2 (1981), 309–313 | DOI | MR | Zbl

[2] R. A. Minlos, E. A. Zhizhina, “Limit diffusion process for a non-homogeneous random walk on a one-dimensional lattice”, Uspekhi Matem. Nauk., 52:2(314) (1997), 87–100 | DOI | MR | Zbl

[3] Theor. Probability and Math. Statist., 85 (2012), 93–105 | DOI | MR | Zbl

[4] A. D. Wentzell, “Semigroups of operators that correspond to a generalized differential operator of second order”, Dokl. Akad. Nauk SSSR (N.S.), 111 (1956), 269–272 (in Russian) | MR | Zbl

[5] A. D. Wentzell, “On boundary conditions for multi-dimensional diffusion processes”, Theory Probab. Appl., 4 (1959), 164–177 | DOI | MR

[6] W. Feller, “Generalized second order differential operators and their lateral conditions”, Illinois J. Math., 1 (1957), 459–504 | MR | Zbl

[7] T. Ueno, “The diffusion satisfying Wentzell's boundary condition and the Markov process on the boundary. I; II”, Proc. Japan Acad., 36 (1960), 533–538 ; 625–629 | DOI | MR | Zbl | Zbl

[8] V. M. Surenkov, “Boundary conditions and an ergodic theorem for processes with independent increments”, Teor. Veroyatnost. i Primenen., 24:1 (1979), 52–61 (Russian. English summary) | MR

[9] S. V. Anulova, “On stochastic differential equations with boundary conditions in a half-plane”, Izv. AN SSSR Ser. Mat., 45:3 (1981), 491–508 | MR | Zbl

[10] B. Grigelionis, R. Mikulevicius, “On weak convergence to random processes with boundary conditions”, Lecture Notes in Math., 972, 1982, 260–275 | DOI | MR | Zbl

[11] Y. Ishikawa, “A remark on the existence of a diffusion process with nonlocal boundary conditions”, J. Math. Soc. Japan, 42:1 (1990), 171–184 | DOI | MR | Zbl

[12] P. L. Gurevich, “On the existence of a Feller semigroup with atomic measure in a nonlocal boundary condition”, Teor. Funkts. i Nelinein. Uravn. v Chastn. Proizvodn., Tr. Mat. Inst. Steklova, 260, 2008, 164–179 (in Russian. Russian summary) | MR | Zbl

[13] S. Watanabe, “Ito's theory of excursion point processes and its developments”, Stochastic Process. Appl., 120:5 (2010), 653–677 | DOI | MR | Zbl

[14] B. I. Kopytko, R. V. Shevchuk, “On pasting together two inhomogeneous diffusion processes on a line with the general Feller-Wentzell conjugation condition”, Theory of Stochastic Processes, 17(33):2 (2011), 55–70 | MR | Zbl

[15] Theory Probab. Math. Statist., 84 (2012), 87–97 | DOI | MR | Zbl

[16] A. V. Skorokhod, “Limit theorems for stochastic processes with independent increments”, Teor. Veroyatnost. i Primenen., 2:2 (1957), 145–177 (in Russian) | MR | Zbl

[17] A. Yu. Pilipenko, “On Skorokhod-type reflection map for equations with a possibility of jump exit from a boundary”, Ukrainian mathematical journal, 63:9 (2011), 1241–1256 | MR

[18] W. Feller, An introduction to probability theory and its applications, v. II, John Wiley and Sons, Inc., New York – London – Sydney, 1966 | MR | Zbl

[19] A. V. Skorokhod, “Stochastic equations for diffusion processes with boundaries. I”, Teor. Veroyatn. Primen., 6:3 (1961), 287–298 | MR | Zbl

[20] P. Billingsley, Convergence of Probability Measures, John Wiley Sons, Inc., New York, 1999 | MR

[21] Addison-Wesley Publ. Co., Inc., Reading. Mass., 1965 | Zbl