Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2014_19_1_a4, author = {M. M. Osypchuk and M. I. Portenko}, title = {On {Ornshtein-Uhlenbeck's} measure of a {Hilbert} ball in the space of continuous functions}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {46--51}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a4/} }
TY - JOUR AU - M. M. Osypchuk AU - M. I. Portenko TI - On Ornshtein-Uhlenbeck's measure of a Hilbert ball in the space of continuous functions JO - Teoriâ slučajnyh processov PY - 2014 SP - 46 EP - 51 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a4/ LA - en ID - THSP_2014_19_1_a4 ER -
M. M. Osypchuk; M. I. Portenko. On Ornshtein-Uhlenbeck's measure of a Hilbert ball in the space of continuous functions. Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 46-51. http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a4/
[1] R. H. Cameron, W. R. Martin, “The Wiener's measure of Hilbert neighbourhood in the space of real continuous functions”, Journal Mass. Inst. Technology, 23 (1944), 195–209 | MR | Zbl
[2] P. Levy, Processus stochastiques et mouvement Brownien, Deuxieme edition revue et augmentee, Paris, 1965 | MR
[3] Journal of Mathematical Sciences, 179:1 (2011), 164–173 | DOI | MR | Zbl
[4] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, Dover Publications, Inc., New York, 1993 | MR | Zbl