On Ornshtein-Uhlenbeck's measure of a Hilbert ball in the space of continuous functions
Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 46-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit formula for the characteristic function of the $L_2$-norm of a path of the Ornshtein-Uhlenbeck process is established and some application of the result is given.
Keywords: Wiener process, Ornshtein-Uhlenbeck process
Mots-clés : Cameron-Martin formula.
@article{THSP_2014_19_1_a4,
     author = {M. M. Osypchuk and M. I. Portenko},
     title = {On {Ornshtein-Uhlenbeck's} measure of a {Hilbert} ball in the space of continuous functions},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {46--51},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a4/}
}
TY  - JOUR
AU  - M. M. Osypchuk
AU  - M. I. Portenko
TI  - On Ornshtein-Uhlenbeck's measure of a Hilbert ball in the space of continuous functions
JO  - Teoriâ slučajnyh processov
PY  - 2014
SP  - 46
EP  - 51
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a4/
LA  - en
ID  - THSP_2014_19_1_a4
ER  - 
%0 Journal Article
%A M. M. Osypchuk
%A M. I. Portenko
%T On Ornshtein-Uhlenbeck's measure of a Hilbert ball in the space of continuous functions
%J Teoriâ slučajnyh processov
%D 2014
%P 46-51
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a4/
%G en
%F THSP_2014_19_1_a4
M. M. Osypchuk; M. I. Portenko. On Ornshtein-Uhlenbeck's measure of a Hilbert ball in the space of continuous functions. Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 46-51. http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a4/

[1] R. H. Cameron, W. R. Martin, “The Wiener's measure of Hilbert neighbourhood in the space of real continuous functions”, Journal Mass. Inst. Technology, 23 (1944), 195–209 | MR | Zbl

[2] P. Levy, Processus stochastiques et mouvement Brownien, Deuxieme edition revue et augmentee, Paris, 1965 | MR

[3] Journal of Mathematical Sciences, 179:1 (2011), 164–173 | DOI | MR | Zbl

[4] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, Dover Publications, Inc., New York, 1993 | MR | Zbl