Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2014_19_1_a1, author = {O. L. Izyumtseva}, title = {On the local times for {Gaussian} integrators}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {11--25}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a1/} }
O. L. Izyumtseva. On the local times for Gaussian integrators. Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 11-25. http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a1/
[1] A. A. Dorogovtsev, “Stochastic integration and one class of Gaussian random processes”, Ukr.math.journal, 50:4 (1998), 495–505 | DOI | MR
[2] A. A. Dorogovtsev, “Smoothing problem in anticipating scenario”, Ukr.math.journal, 57:9 (2005), 1424–1441 | DOI | MR | Zbl
[3] P. Halmosh, V. Sander, Bounded integral operators on $L_2$ spaces, Springer, Berlin, 1978
[4] A. Dorogovtsev, O. Izyumtseva, Self-intersection local times for Gaussian processes, Lap Lambert Academic Publishing, Germany, 2011, 152 pp. (in Russian)
[5] A. Dorogovtsev, O. Izyumtseva, “On regularization of the formal Fourier-Wiener transform of the self-intersection local time of a planar Gaussian process”, Theory of stochastic Processes, 17(33):1 (2011), 28–38 | MR | Zbl
[6] A. Dorogovtsev, O. Izyumtseva, “Asymptotic and geometric properties of compactly perturbed Wiener process and self-intersection local time”, Communications on Stochastic Analysis, 7:2 (2013), 337–348 | MR
[7] A. A. Dorogovtsev, O. L. Izyumtseva, “Self-intersection local times for planar Gaussian processes”, Doklady Akademii Nauk, 454:3 (2014) (in Russian) | Zbl
[8] S. Berman, “Local nondeterminism and local times of Gaussian processes”, Indiana University Mathematics Journal, 23:1 (1973), 69–94 | DOI | MR | Zbl
[9] J. Rosen, “A local time approach to the self-intersections of Brownian paths in space”, Commun. Math. Phys., 88 (1983), 327–338 | DOI | MR | Zbl
[10] A. Rudenko, “Existence of generalized local time for Gaussian random fields”, Theory of Stochastic Processes, 12(28):1–2 (2006), 142–153 | MR | Zbl
[11] M. Marcus and J. Rosen, Markov processes, Gaussian processes and local times, Gambridge university press, 2006, 620 pp. | MR
[12] V. I. Bogachev, Gaussian measures, Mathematical surveys and monographs, 62, American Mathematical Society, United States of America, 1998, 433 pp. | DOI | MR | Zbl
[13] P. Imkeller, F. Weisz, “The asymptotic behaviour of local times and occupation integrals of $N$-parameter Wiener process in $\mathbb{R}^d$”, Probab. Theory. Relat. Fields, 98 (1994), 47–75 | DOI | MR | Zbl
[14] O. Kallenberg, Foundations of modern probability, Probability and its applications, Springer, New York, 2002, 638 pp. | DOI | MR | Zbl