On the local times for Gaussian integrators
Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 11-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Gaussian integrators with values in $\mathbb{R}$ and $\mathbb{R}^2$ the properties of the local time is investigated in terms of the operator which determines the geometry of covariance function. The explicit formula for the modulus of continuity of Gaussian integrators is obtained.
Keywords: Integrator, white noise, local time, self-intersection local time, local nondeterminism, modulus of continuity.
@article{THSP_2014_19_1_a1,
     author = {O. L. Izyumtseva},
     title = {On the local times for {Gaussian} integrators},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {11--25},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a1/}
}
TY  - JOUR
AU  - O. L. Izyumtseva
TI  - On the local times for Gaussian integrators
JO  - Teoriâ slučajnyh processov
PY  - 2014
SP  - 11
EP  - 25
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a1/
LA  - en
ID  - THSP_2014_19_1_a1
ER  - 
%0 Journal Article
%A O. L. Izyumtseva
%T On the local times for Gaussian integrators
%J Teoriâ slučajnyh processov
%D 2014
%P 11-25
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a1/
%G en
%F THSP_2014_19_1_a1
O. L. Izyumtseva. On the local times for Gaussian integrators. Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 11-25. http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a1/

[1] A. A. Dorogovtsev, “Stochastic integration and one class of Gaussian random processes”, Ukr.math.journal, 50:4 (1998), 495–505 | DOI | MR

[2] A. A. Dorogovtsev, “Smoothing problem in anticipating scenario”, Ukr.math.journal, 57:9 (2005), 1424–1441 | DOI | MR | Zbl

[3] P. Halmosh, V. Sander, Bounded integral operators on $L_2$ spaces, Springer, Berlin, 1978

[4] A. Dorogovtsev, O. Izyumtseva, Self-intersection local times for Gaussian processes, Lap Lambert Academic Publishing, Germany, 2011, 152 pp. (in Russian)

[5] A. Dorogovtsev, O. Izyumtseva, “On regularization of the formal Fourier-Wiener transform of the self-intersection local time of a planar Gaussian process”, Theory of stochastic Processes, 17(33):1 (2011), 28–38 | MR | Zbl

[6] A. Dorogovtsev, O. Izyumtseva, “Asymptotic and geometric properties of compactly perturbed Wiener process and self-intersection local time”, Communications on Stochastic Analysis, 7:2 (2013), 337–348 | MR

[7] A. A. Dorogovtsev, O. L. Izyumtseva, “Self-intersection local times for planar Gaussian processes”, Doklady Akademii Nauk, 454:3 (2014) (in Russian) | Zbl

[8] S. Berman, “Local nondeterminism and local times of Gaussian processes”, Indiana University Mathematics Journal, 23:1 (1973), 69–94 | DOI | MR | Zbl

[9] J. Rosen, “A local time approach to the self-intersections of Brownian paths in space”, Commun. Math. Phys., 88 (1983), 327–338 | DOI | MR | Zbl

[10] A. Rudenko, “Existence of generalized local time for Gaussian random fields”, Theory of Stochastic Processes, 12(28):1–2 (2006), 142–153 | MR | Zbl

[11] M. Marcus and J. Rosen, Markov processes, Gaussian processes and local times, Gambridge university press, 2006, 620 pp. | MR

[12] V. I. Bogachev, Gaussian measures, Mathematical surveys and monographs, 62, American Mathematical Society, United States of America, 1998, 433 pp. | DOI | MR | Zbl

[13] P. Imkeller, F. Weisz, “The asymptotic behaviour of local times and occupation integrals of $N$-parameter Wiener process in $\mathbb{R}^d$”, Probab. Theory. Relat. Fields, 98 (1994), 47–75 | DOI | MR | Zbl

[14] O. Kallenberg, Foundations of modern probability, Probability and its applications, Springer, New York, 2002, 638 pp. | DOI | MR | Zbl