Asymptotic properties of linear regression parameter estimator in the case of long-range dependent regressors and noise
Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 1-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions of consistency and asymptotic normality of least squares estimator of linear regression model parameter in the case of long-range dependent random regressors and noise are obtained in the paper.
Keywords: Consistency, asymptotic normality, least squares estimator, linear regression, random regressors, long-range dependence.
@article{THSP_2014_19_1_a0,
     author = {A. V. Ivanov and I. V. Orlovsky},
     title = {Asymptotic properties of linear regression parameter estimator in the case of long-range dependent regressors and noise},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a0/}
}
TY  - JOUR
AU  - A. V. Ivanov
AU  - I. V. Orlovsky
TI  - Asymptotic properties of linear regression parameter estimator in the case of long-range dependent regressors and noise
JO  - Teoriâ slučajnyh processov
PY  - 2014
SP  - 1
EP  - 10
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a0/
LA  - en
ID  - THSP_2014_19_1_a0
ER  - 
%0 Journal Article
%A A. V. Ivanov
%A I. V. Orlovsky
%T Asymptotic properties of linear regression parameter estimator in the case of long-range dependent regressors and noise
%J Teoriâ slučajnyh processov
%D 2014
%P 1-10
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a0/
%G en
%F THSP_2014_19_1_a0
A. V. Ivanov; I. V. Orlovsky. Asymptotic properties of linear regression parameter estimator in the case of long-range dependent regressors and noise. Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a0/

[1] A. Ya. Dorogovtsev, Theory of estimator of random processes parameters, Vyscha Shkola, Kiyv, 1982 (in Russian) | MR

[2] L. P. Golubovska, A. V. Ivanov, I. V. Orlovsky, “Asymptotic properties of estimator of linear regression parameter in case of long-range dependent regressors”, Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 4(84) (2012), 26–33 (in Ukrainian)

[3] E. Seneta, Regurarly varying function, Nauka, M., 1985 (in Russian) | MR

[4] I. I. Gikhman, A. V. Skorohod, Introduction to the theory of random processes, Nauka, M., 1977 (in Russian) | MR | Zbl

[5] F. Avram, N. Leonenko, L. Sakhno, “On a Szegö type limit theorem, the Hölder-Young-Brascamp-Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields”, ESAIM: Probability and Statistics, 14 (2010), 210–255 | DOI | MR | Zbl

[6] E. H. Lieb, Inequalities: selecta of Elliott H. Lieb, Springer, 2000 | MR

[7] V. V. Anh, V. P. Knopova, N. N. Leonenko, “Continuous-time stochastic process with cyclical long-range dependence”, Australian and New Zeland Journal of Statistics, 46 (2004), 275–296 | DOI | MR | Zbl

[8] I. A. Ibragimov, U. A. Rozanov, Gaussian random processes, Nauka, M., 1970 (in Russian)

[9] A. V. Ivanov, I. M. Savich, “$\mu$-admissability of spectral density of long-range dependent random noise in nonlinear regression models”, Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 1 (2009), 143–148 (in Ukrainian)

[10] A. V. Ivanov, N. N. Leonenko, Statistical analysis of random fields, Vyscha Shkola, Kiev, 1986 (in Russian) | MR

[11] U. Grenander, M. Rosenblatt, Statistical analysis of stationary time series, Almqvist and Wiksell, Stockholm, 1956 | MR

[12] A. V. Ivanov, “A solution of the problem of detecting hidden periodicities”, Probability Theory and Mathematical Statistics, 20 (1980), 51–67

[13] A. P. Prudnikov, U. A. Brichkov, O. I. Marichev, Integrals and series. Elementary functions, Nauka, M., 1981 (in Russian) | MR | Zbl