Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2014_19_1_a0, author = {A. V. Ivanov and I. V. Orlovsky}, title = {Asymptotic properties of linear regression parameter estimator in the case of long-range dependent regressors and noise}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {1--10}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a0/} }
TY - JOUR AU - A. V. Ivanov AU - I. V. Orlovsky TI - Asymptotic properties of linear regression parameter estimator in the case of long-range dependent regressors and noise JO - Teoriâ slučajnyh processov PY - 2014 SP - 1 EP - 10 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a0/ LA - en ID - THSP_2014_19_1_a0 ER -
%0 Journal Article %A A. V. Ivanov %A I. V. Orlovsky %T Asymptotic properties of linear regression parameter estimator in the case of long-range dependent regressors and noise %J Teoriâ slučajnyh processov %D 2014 %P 1-10 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a0/ %G en %F THSP_2014_19_1_a0
A. V. Ivanov; I. V. Orlovsky. Asymptotic properties of linear regression parameter estimator in the case of long-range dependent regressors and noise. Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a0/
[1] A. Ya. Dorogovtsev, Theory of estimator of random processes parameters, Vyscha Shkola, Kiyv, 1982 (in Russian) | MR
[2] L. P. Golubovska, A. V. Ivanov, I. V. Orlovsky, “Asymptotic properties of estimator of linear regression parameter in case of long-range dependent regressors”, Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 4(84) (2012), 26–33 (in Ukrainian)
[3] E. Seneta, Regurarly varying function, Nauka, M., 1985 (in Russian) | MR
[4] I. I. Gikhman, A. V. Skorohod, Introduction to the theory of random processes, Nauka, M., 1977 (in Russian) | MR | Zbl
[5] F. Avram, N. Leonenko, L. Sakhno, “On a Szegö type limit theorem, the Hölder-Young-Brascamp-Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields”, ESAIM: Probability and Statistics, 14 (2010), 210–255 | DOI | MR | Zbl
[6] E. H. Lieb, Inequalities: selecta of Elliott H. Lieb, Springer, 2000 | MR
[7] V. V. Anh, V. P. Knopova, N. N. Leonenko, “Continuous-time stochastic process with cyclical long-range dependence”, Australian and New Zeland Journal of Statistics, 46 (2004), 275–296 | DOI | MR | Zbl
[8] I. A. Ibragimov, U. A. Rozanov, Gaussian random processes, Nauka, M., 1970 (in Russian)
[9] A. V. Ivanov, I. M. Savich, “$\mu$-admissability of spectral density of long-range dependent random noise in nonlinear regression models”, Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 1 (2009), 143–148 (in Ukrainian)
[10] A. V. Ivanov, N. N. Leonenko, Statistical analysis of random fields, Vyscha Shkola, Kiev, 1986 (in Russian) | MR
[11] U. Grenander, M. Rosenblatt, Statistical analysis of stationary time series, Almqvist and Wiksell, Stockholm, 1956 | MR
[12] A. V. Ivanov, “A solution of the problem of detecting hidden periodicities”, Probability Theory and Mathematical Statistics, 20 (1980), 51–67
[13] A. P. Prudnikov, U. A. Brichkov, O. I. Marichev, Integrals and series. Elementary functions, Nauka, M., 1981 (in Russian) | MR | Zbl