Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2012_18_2_a9, author = {W. I. Skrypnik}, title = {On lattice oscillator-type {Gibbs} systems with superstable many-body potentials}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {96--101}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a9/} }
W. I. Skrypnik. On lattice oscillator-type Gibbs systems with superstable many-body potentials. Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 96-101. http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a9/
[1] W. Skrypnik, “On the evolution of Gibbs states of the lattice gradient stochastic dynamics of interacting oscillators”, Theory Stoch. Processes, 15(31):1 (2009), 61–82 | MR | Zbl
[2] D. Ruelle, “Probability estimates for continuous spin systems”, Commun. Math. Phys., 50 (1976), 189-193 | DOI | MR
[3] J. Lebowitz, E. Presutti, “Statistical mechanics of systems of unbounded spins”, Commun. Math. Phys., 50 (1976), 195-218 | DOI | MR
[4] W. Skrypnik, “On lattice oscillator-type Kirkwood–Salzburg equation with attractive many-body potentials”, Ukr. Math. J., 62:12 (2010), 1687-1704 | MR | Zbl
[5] R. Israel, C. Nappi, “Quark confinement in the two dimensional lattice Higgs–Villain model”, Commun. Math. Phys., 64:2 (1979), 1-189 | DOI | MR
[6] D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamin, New York, 1969 | MR | Zbl