On lattice oscillator-type Gibbs systems with superstable many-body potentials
Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 96-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

The grand canonical correlation functions of lattice oscillator-type Gibbs systems with a general one-body phase measure space and many-body superstable interaction potentials are found in the thermodynamic limit at low activities as a solution of the ordered lattice Kirkwood–Salzburg equation. For special choices of the measure space, they describe the equilibrium states of lattice classical and quantum linear oscillator systems and the states of stochastic gradient lattice systems of interacting oscillators with Gibbs initial states.
Keywords: Lattice oscillator-type Gibbs systems, superstable many-body potential, thermodynamic limit, Kirkwood–Salzburg equation.
@article{THSP_2012_18_2_a9,
     author = {W. I. Skrypnik},
     title = {On lattice oscillator-type {Gibbs} systems with superstable many-body potentials},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {96--101},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a9/}
}
TY  - JOUR
AU  - W. I. Skrypnik
TI  - On lattice oscillator-type Gibbs systems with superstable many-body potentials
JO  - Teoriâ slučajnyh processov
PY  - 2012
SP  - 96
EP  - 101
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a9/
LA  - en
ID  - THSP_2012_18_2_a9
ER  - 
%0 Journal Article
%A W. I. Skrypnik
%T On lattice oscillator-type Gibbs systems with superstable many-body potentials
%J Teoriâ slučajnyh processov
%D 2012
%P 96-101
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a9/
%G en
%F THSP_2012_18_2_a9
W. I. Skrypnik. On lattice oscillator-type Gibbs systems with superstable many-body potentials. Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 96-101. http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a9/

[1] W. Skrypnik, “On the evolution of Gibbs states of the lattice gradient stochastic dynamics of interacting oscillators”, Theory Stoch. Processes, 15(31):1 (2009), 61–82 | MR | Zbl

[2] D. Ruelle, “Probability estimates for continuous spin systems”, Commun. Math. Phys., 50 (1976), 189-193 | DOI | MR

[3] J. Lebowitz, E. Presutti, “Statistical mechanics of systems of unbounded spins”, Commun. Math. Phys., 50 (1976), 195-218 | DOI | MR

[4] W. Skrypnik, “On lattice oscillator-type Kirkwood–Salzburg equation with attractive many-body potentials”, Ukr. Math. J., 62:12 (2010), 1687-1704 | MR | Zbl

[5] R. Israel, C. Nappi, “Quark confinement in the two dimensional lattice Higgs–Villain model”, Commun. Math. Phys., 64:2 (1979), 1-189 | DOI | MR

[6] D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamin, New York, 1969 | MR | Zbl