On strong existence and continuous dependence for solutions of one-dimensional stochastic equations with additive L\'evy noise
Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 77-82
Voir la notice de l'article provenant de la source Math-Net.Ru
One-dimensional stochastic differential equations (SDEs) with additive Lévy noise are considered. Conditions for strong existence and uniqueness of a solution are obtained. In particular, if the noise is a Lévy symmetric stable process with $\alpha\in(1;2),$ then the measurability and the boundedness of a drift term is sufficient for the existence of a strong solution. We also study the continuous dependence of the strong solution on the initial value and the drift.
Keywords:
Stochastic flow, local times, differentiability with respect to initial data.
@article{THSP_2012_18_2_a7,
author = {A. Yu. Pilipenko},
title = {On strong existence and continuous dependence for solutions of one-dimensional stochastic equations with additive {L\'evy} noise},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {77--82},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a7/}
}
TY - JOUR AU - A. Yu. Pilipenko TI - On strong existence and continuous dependence for solutions of one-dimensional stochastic equations with additive L\'evy noise JO - Teoriâ slučajnyh processov PY - 2012 SP - 77 EP - 82 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a7/ LA - en ID - THSP_2012_18_2_a7 ER -
%0 Journal Article %A A. Yu. Pilipenko %T On strong existence and continuous dependence for solutions of one-dimensional stochastic equations with additive L\'evy noise %J Teoriâ slučajnyh processov %D 2012 %P 77-82 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a7/ %G en %F THSP_2012_18_2_a7
A. Yu. Pilipenko. On strong existence and continuous dependence for solutions of one-dimensional stochastic equations with additive L\'evy noise. Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 77-82. http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a7/