Large deviation principle for processes with Poisson noise term
Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 59-76

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\tilde{\nu}_n(du,dt)$ be a centered Poisson measure with the parameter $n\Pi(du)dt,$ and let $a_n(t,\omega)$ and $f_n(u,t,\omega)$ be stochastic processes. The large deviation principle for the sequence $\eta_n(t)=x_0+\int\limits_0^t a_n(s)ds+\frac{1}{\sqrt{ n}\varphi(n)}\int\limits_0^t\int f_n(u,s)\tilde{\nu}_n(du,ds)$ is proved. As examples, the large deviation principles for the normalized integral of a telegraph signal and for stochastic differential equations with periodic coefficients are obtained.
Keywords: Large deviations, rate functional, Poisson measure, telegraph signal process.
@article{THSP_2012_18_2_a6,
     author = {A. V. Logachov},
     title = {Large deviation principle for processes with {Poisson} noise term},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {59--76},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a6/}
}
TY  - JOUR
AU  - A. V. Logachov
TI  - Large deviation principle for processes with Poisson noise term
JO  - Teoriâ slučajnyh processov
PY  - 2012
SP  - 59
EP  - 76
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a6/
LA  - en
ID  - THSP_2012_18_2_a6
ER  - 
%0 Journal Article
%A A. V. Logachov
%T Large deviation principle for processes with Poisson noise term
%J Teoriâ slučajnyh processov
%D 2012
%P 59-76
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a6/
%G en
%F THSP_2012_18_2_a6
A. V. Logachov. Large deviation principle for processes with Poisson noise term. Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 59-76. http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a6/