Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2012_18_2_a6, author = {A. V. Logachov}, title = {Large deviation principle for processes with {Poisson} noise term}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {59--76}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a6/} }
A. V. Logachov. Large deviation principle for processes with Poisson noise term. Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 59-76. http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a6/
[1] M. A. Arcones, “The large deviation principle for stochastic processes I”, Theory of Probab. and Its Appl., 47 (2003), 567–583 | DOI | MR | Zbl
[2] M. A. Arcones, “The large deviation principle for stochastic processes II”, Theory of Probab. and Its Appl., 48 (2004), 19–44 | DOI | MR
[3] A. D. Wentzell, Limit Theorems on Large Deviations for Markov Stochastic Processes, Kluwer, Dordrecht, 1990 | MR | Zbl
[4] A. A. Mogulskii, “The large deviation for processes with independed increments”, Ann. of Probab., 21:1 (1993), 202–215 | DOI | MR | Zbl
[5] C. Leonard, “Large deviations for Poisson random measures and processes with independent increments”, Stoch. Process. and Their Appl., 85 (2000), 93–121 | DOI | MR | Zbl
[6] J. Lynch, J. Sethuraman, “Large deviations for processes with independent increments”, Ann. of Probab., 15:2 (1987), 610–627 | DOI | MR | Zbl
[7] M. Rockner, T. Zhang, “Stochastic evolution equation of jump type: existence, uniqueness and large deviation principles”, Potent. Analys., 26:3 (2007), 255–279 | DOI | MR | Zbl
[8] S. Ya. Makhno, “Large deviations for solutions of stochastic equations”, Theory of Probab. and Its Appl., 40 (1995), 660–678 | DOI | MR | Zbl
[9] A. Puhalskii, “On some degenerate large deviation problems”, Electr. J. of Probab., 9 (2004), 862–886 | MR | Zbl
[10] M. I. Freidlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York, 1984 | MR | Zbl
[11] A. Puhalskii, Large Deviations and Idempotent Probability, Chapman and Hall/CRC, Boca Raton, 2001 | MR | Zbl
[12] Jing Feng, Thomas Kurtz, Large Deviations for Stochastic Processes, Amer. Math. Soc., Providence, RI, 2006 | MR
[13] Amir Dembo, Ofer Zeitouni, Large Deviations Techniques and Applications, Springer, New York, 1998 | MR | Zbl
[14] I. P. Natanson, Theory of Functions of a Real Variable, Nauka, Moscow, 2008 (in Russian) | MR
[15] M. I. Freidlin, R. B. Sowersb, “A comparison of homogenization and large deviations, with applications to wavefront propagation”, Stoch. Process. Their Appl., 82 (1999), 23–52 | DOI | MR | Zbl