Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2012_18_2_a5, author = {M. P. Lagunova}, title = {Stochastic differential equations with interaction and the law of iterated logarithm}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {54--58}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a5/} }
M. P. Lagunova. Stochastic differential equations with interaction and the law of iterated logarithm. Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 54-58. http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a5/
[1] A. A. Dorogovtsev, “Measure-valued Markov processes and stochastic flows on abstract spaces”, Stoch. Rep., 76:5 (2004), 395–407 | DOI | MR | Zbl
[2] G. L. Kulinič, “On the law of iterated logarithm for one-dimensional diffusion processes”, Teor. Veroyat. Primen., 29 (1984), 544–547 | MR | Zbl
[3] L. Caramellino, “Strassen's law of the iterated logarithm for diffusion processes for small time”, Stoch. Process. Their Appl., 74 (1998), 1-19 | DOI | MR | Zbl
[4] O. Kallenberg, Foundations of Modern Probability, Springer, Berlin, 2002 | MR | Zbl
[5] M. P. Karlikova, “On a weak solution of an equation for an evolutionary flow with interaction”, Ukr. Math. J., 57:7 (2005), 1055–1065 | DOI | MR | Zbl
[6] S. H. Strogatz, “From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Bifurcations, patterns and symmetry”, Phys. D, 143:1-4 (2000), 1-20 | DOI | MR | Zbl