On the speed of convergence in the local limit theorem for triangular arrays of random variables
Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 24-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish the upper bound on the speed of convergence to the infinitely divisible limit density in the local limit theorem for triangular arrays of random variables $\{X_{k,n},\, k=1,..,a_n, \, n\in \mathbb{N}\}$.
Keywords: Local limit theorem, infinitely divisible law, speed of convergence.
@article{THSP_2012_18_2_a3,
     author = {V. P. Knopova},
     title = {On the speed of convergence in the local limit theorem for triangular arrays of random variables},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {24--32},
     year = {2012},
     volume = {18},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a3/}
}
TY  - JOUR
AU  - V. P. Knopova
TI  - On the speed of convergence in the local limit theorem for triangular arrays of random variables
JO  - Teoriâ slučajnyh processov
PY  - 2012
SP  - 24
EP  - 32
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a3/
LA  - en
ID  - THSP_2012_18_2_a3
ER  - 
%0 Journal Article
%A V. P. Knopova
%T On the speed of convergence in the local limit theorem for triangular arrays of random variables
%J Teoriâ slučajnyh processov
%D 2012
%P 24-32
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a3/
%G en
%F THSP_2012_18_2_a3
V. P. Knopova. On the speed of convergence in the local limit theorem for triangular arrays of random variables. Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 24-32. http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a3/

[1] H. Bateman, A. Erdèlyi, Tables of integral transforms, v. 1, McGraw-Hill, New York, 1954 | Zbl

[2] W. Feller, An Introduction to Probability Theory and Its Applications, v. II, Second edition, John Wiley $\$ Sons, Inc., New York-London-Sydney, 1971 | MR | Zbl

[3] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary dependent variables, Wolters-Nordhoff Publishing, Groningen, 1971 | MR

[4] O. Kallenberg, “Splitting at backward times in regenerative sets”, Ann. Prob., 9 (1981), 781–799 | DOI | MR | Zbl

[5] I. Korchinsky, A. M. Kulik, “Local limit theorem for triangular array of random variables”, Theory Stoch. Proc., 13 (29):3 (2007), 48–54 | MR | Zbl

[6] E. Lukacs, Characteristic function, Griffin, London, 1979